當前位置: 首頁>>代碼示例>>Python>>正文


Python base.load_iris方法代碼示例

本文整理匯總了Python中tensorflow.contrib.learn.python.learn.datasets.base.load_iris方法的典型用法代碼示例。如果您正苦於以下問題:Python base.load_iris方法的具體用法?Python base.load_iris怎麽用?Python base.load_iris使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.learn.python.learn.datasets.base的用法示例。


在下文中一共展示了base.load_iris方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testClassification

# 需要導入模塊: from tensorflow.contrib.learn.python.learn.datasets import base [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.datasets.base import load_iris [as 別名]
def testClassification(self):
    """Tests multi-class classification using matrix data as input."""
    hparams = tensor_forest.ForestHParams(
        num_trees=3,
        max_nodes=1000,
        num_classes=3,
        num_features=4,
        split_after_samples=20)
    classifier = random_forest.TensorForestEstimator(hparams.fill())

    iris = base.load_iris()
    data = iris.data.astype(np.float32)
    labels = iris.target.astype(np.float32)

    classifier.fit(x=data, y=labels, steps=100, batch_size=50)
    classifier.evaluate(x=data, y=labels, steps=10) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:random_forest_test.py

示例2: iris_input_fn

# 需要導入模塊: from tensorflow.contrib.learn.python.learn.datasets import base [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.datasets.base import load_iris [as 別名]
def iris_input_fn():
  iris = base.load_iris()
  features = tf.reshape(tf.constant(iris.data), [-1, _IRIS_INPUT_DIM])
  labels = tf.reshape(tf.constant(iris.target), [-1])
  return features, labels 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:debug_tflearn_iris.py

示例3: prepare_iris_data_for_logistic_regression

# 需要導入模塊: from tensorflow.contrib.learn.python.learn.datasets import base [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.datasets.base import load_iris [as 別名]
def prepare_iris_data_for_logistic_regression():
  # Converts iris data to a logistic regression problem.
  iris = base.load_iris()
  ids = np.where((iris.target == 0) | (iris.target == 1))
  return base.Dataset(data=iris.data[ids], target=iris.target[ids]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:test_data.py

示例4: iris_input_multiclass_fn

# 需要導入模塊: from tensorflow.contrib.learn.python.learn.datasets import base [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.datasets.base import load_iris [as 別名]
def iris_input_multiclass_fn():
  iris = base.load_iris()
  return {
      'feature': constant_op.constant(
          iris.data, dtype=dtypes.float32)
  }, constant_op.constant(
      iris.target, shape=(150, 1), dtype=dtypes.int32) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:test_data.py

示例5: testClassificationTrainingLoss

# 需要導入模塊: from tensorflow.contrib.learn.python.learn.datasets import base [as 別名]
# 或者: from tensorflow.contrib.learn.python.learn.datasets.base import load_iris [as 別名]
def testClassificationTrainingLoss(self):
    """Tests multi-class classification using matrix data as input."""
    hparams = tensor_forest.ForestHParams(
        num_trees=3, max_nodes=1000, num_classes=3, num_features=4)
    classifier = random_forest.TensorForestEstimator(
        hparams, graph_builder_class=(tensor_forest.TrainingLossForest))

    iris = base.load_iris()
    data = iris.data.astype(np.float32)
    labels = iris.target.astype(np.float32)

    monitors = [random_forest.TensorForestLossHook(10)]
    classifier.fit(x=data, y=labels, steps=100, monitors=monitors)
    classifier.evaluate(x=data, y=labels, steps=10) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:16,代碼來源:random_forest_test.py


注:本文中的tensorflow.contrib.learn.python.learn.datasets.base.load_iris方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。