當前位置: 首頁>>代碼示例>>Python>>正文


Python learn.DNNClassifier方法代碼示例

本文整理匯總了Python中tensorflow.contrib.learn.DNNClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python learn.DNNClassifier方法的具體用法?Python learn.DNNClassifier怎麽用?Python learn.DNNClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.learn的用法示例。


在下文中一共展示了learn.DNNClassifier方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: dnntfDef

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def dnntfDef(self):
        self.conf['DNNClassifier'] = {
            'runDNNTF' : True,
            'runSkflowDNNTF' : True,
            'alwaysRetrainDNNTF' : False,
            'alwaysImproveDNNTF' : True,
            'hidden_layersDNNTF' : [400,],
            'optimizerDNNTF' : "ProximalAdagrad",
            'learning_rateDNNTF' : 0.1,
            'l2_reg_strengthDNNTF' : 1e-4,
            'activation_functionDNNTF' : "tanh",
            'dropout_percDNNTF' : str(None),
            'trainingStepsDNNTF' : 1000,
            'valMonitorSecsDNNTF' : 200,
            'logCheckpointDNNTF' : True,
            'timeCheckpointDNNTF' : 20,
            'thresholdProbabilityPredDNNTF' : 0.01,
            'plotMapDNNTF' : True,
            } 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:21,代碼來源:SpectraLearnPredict.py

示例2: dnntfDef

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def dnntfDef(self):
        self.conf['DNNClassifier'] = {
            'runDNNTF' : True,
            'runSkflowDNNTF' : True,
            'alwaysRetrainDNNTF' : False,
            'alwaysImproveDNNTF' : True,
            'hidden_layersDNNTF' : [400,],
            'optimizerDNNTF' : "ProximalAdagrad",
            'learning_rateDNNTF' : 0.1,
            'learning_rate_decayDNNTF' : False,
            'learning_rate_decay_rateDNNTF' : 0.96,
            'learning_rate_decay_stepsDNNTF' : 100,
            'l2_reg_strengthDNNTF' : 1e-4,
            'activation_functionDNNTF' : "tanh",
            'dropout_percDNNTF' : str(None),
            'trainingStepsDNNTF' : 1000,
            'valMonitorSecsDNNTF' : 200,
            'logCheckpointDNNTF' : True,
            'timeCheckpointDNNTF' : 20,
            'thresholdProbabilityPredDNNTF' : 0.01,
            'plotMapDNNTF' : True,
            'shuffleTrainDNNTF' : True,
            'shuffleTestDNNTF' : False,
            } 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:26,代碼來源:SpectraLearnPredict.py

示例3: printInfo

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def printInfo():
    print('==========================================================================\n')
    print('\033[1m Running Deep Neural Networks: tf.DNNClassifier - TensorFlow...\033[0m')
    print('  Optimizer:',dnntfDef.optimizer_tag,
                '\n  Hidden layers:', dnntfDef.hidden_layers,
                '\n  Activation function:',dnntfDef.activation_function,
                '\n  L2:',dnntfDef.l2_reg_strength,
                '\n  Dropout:', dnntfDef.dropout_perc,
                '\n  Learning rate:', dnntfDef.learning_rate,
                '\n  Shuffle Train:', dnntfDef.shuffleTrain,
                '\n  Shuffle Test:', dnntfDef.shuffleTest,)
    if dnntfDef.learning_rate_decay == False:
        print('  Fixed learning rate :',dnntfDef.learning_rate,)
    else:
        print('  Exponential decay - initial learning rate:',dnntfDef.learning_rate,
                '\n  Exponential decay rate:', dnntfDef.learning_rate_decay_rate,
                '\n  Exponential decay steps:', dnntfDef.learning_rate_decay_steps,)

#******************************************************************************** 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:21,代碼來源:slp_tf.py

示例4: main

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def main(unused_argv):
  iris = load_iris()
  x_train, x_test, y_train, y_test = cross_validation.train_test_split(
      iris.data, iris.target, test_size=0.2, random_state=42)

  # It's useful to scale to ensure Stochastic Gradient Descent
  # will do the right thing.
  scaler = StandardScaler()

  # DNN classifier.
  classifier = learn.DNNClassifier(
      feature_columns=learn.infer_real_valued_columns_from_input(x_train),
      hidden_units=[10, 20, 10], n_classes=3)

  pipeline = Pipeline([('scaler', scaler),
                       ('DNNclassifier', classifier)])

  pipeline.fit(x_train, y_train, DNNclassifier__steps=200)

  score = accuracy_score(y_test, list(pipeline.predict(x_test)))
  print('Accuracy: {0:f}'.format(score)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:iris_with_pipeline.py

示例5: main

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def main(unused_argv):
  # Load dataset.
  iris = learn.datasets.load_dataset('iris')
  x_train, x_test, y_train, y_test = cross_validation.train_test_split(
      iris.data, iris.target, test_size=0.2, random_state=42)

  # Build 3 layer DNN with 10, 20, 10 units respectively.
  feature_columns = learn.infer_real_valued_columns_from_input(x_train)
  classifier = learn.DNNClassifier(
      feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3)

  # Fit and predict.
  classifier.fit(x_train, y_train, steps=200)
  predictions = list(classifier.predict(x_test, as_iterable=True))
  score = metrics.accuracy_score(y_test, predictions)
  print('Accuracy: {0:f}'.format(score)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:iris.py

示例6: predDNNTF

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def predDNNTF(clf, le, R, Cl):
    import tensorflow as tf
    import tensorflow.contrib.learn as skflow
    from sklearn import preprocessing

    #**********************************************
    ''' Predict '''
    #**********************************************
    def input_fn_predict():
        x = tf.constant(R.astype(np.float32))
        return x

    pred_class = list(clf.predict_classes(input_fn=input_fn_predict))[0]
    predValue = le.inverse_transform(pred_class)
    prob = list(clf.predict_proba(input_fn=input_fn_predict))[0]
    predProb = round(100*prob[pred_class],2)
    
    rosterPred = np.where(prob>dnntfDef.thresholdProbabilityPred/100)[0]
    
    print('\n  ===================================')
    print('  \033[1msk-DNN-TF\033[0m - Probability >',str(dnntfDef.thresholdProbabilityPred),'%')
    print('  ===================================')
    print('  Prediction\tProbability [%]')
    for i in range(rosterPred.shape[0]):
        print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.4f}'.format(100*prob[rosterPred][i])))
    print('  ===================================')
    
    print('\033[1m' + '\n Predicted value (skflow.DNNClassifier) = ' + predValue +
          '  (probability = ' + str(predProb) + '%)\033[0m\n')

    return predValue, predProb

#********************************************** 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:35,代碼來源:SpectraLearnPredict.py

示例7: predDNNTF2

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def predDNNTF2(clf, le, R, Cl):
    import tensorflow as tf
    import tensorflow.contrib.learn as skflow
    from sklearn import preprocessing

    predict_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": R},
      num_epochs=1,
      shuffle=False)
      
    predictions = list(clf.predict(input_fn=predict_input_fn))
    pred_class = [p["class_ids"] for p in predictions][0][0]
    predValue = le.inverse_transform(pred_class)
    prob = [p["probabilities"] for p in predictions][0]
    predProb = round(100*prob[pred_class],2)
    
    rosterPred = np.where(prob>dnntfDef.thresholdProbabilityPred/100)[0]
    
    print('\n  ==================================')
    print('  \033[1mtf.DNN-TF\033[0m - Probability >',str(dnntfDef.thresholdProbabilityPred),'%')
    print('  ==================================')
    print('  Prediction\tProbability [%]')
    for i in range(rosterPred.shape[0]):
        print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.4f}'.format(100*prob[rosterPred][i])))
    print('  ==================================')
    
    print('\033[1m' + '\n Predicted value (tf.DNNClassifier) = ' + predValue +
          '  (probability = ' + str(predProb) + '%)\033[0m\n')

    return predValue, predProb

#******************************************************************************** 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:34,代碼來源:SpectraLearnPredict.py

示例8: main

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def main(unused_argv):
  iris = datasets.load_iris()
  x_train, x_test, y_train, y_test = train_test_split(
      iris.data, iris.target, test_size=0.2, random_state=42)

  x_train, x_val, y_train, y_val = train_test_split(
      x_train, y_train, test_size=0.2, random_state=42)
  val_monitor = learn.monitors.ValidationMonitor(
      x_val, y_val, early_stopping_rounds=200)

  model_dir = '/tmp/iris_model'
  clean_folder(model_dir)

  # classifier with early stopping on training data
  classifier1 = learn.DNNClassifier(
      feature_columns=learn.infer_real_valued_columns_from_input(x_train),
      hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir)
  classifier1.fit(x=x_train, y=y_train, steps=2000)
  predictions1 = list(classifier1.predict(x_test, as_iterable=True))
  score1 = metrics.accuracy_score(y_test, predictions1)

  model_dir = '/tmp/iris_model_val'
  clean_folder(model_dir)

  # classifier with early stopping on validation data, save frequently for
  # monitor to pick up new checkpoints.
  classifier2 = learn.DNNClassifier(
      feature_columns=learn.infer_real_valued_columns_from_input(x_train),
      hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir,
      config=tf.contrib.learn.RunConfig(save_checkpoints_secs=1))
  classifier2.fit(x=x_train, y=y_train, steps=2000, monitors=[val_monitor])
  predictions2 = list(classifier2.predict(x_test, as_iterable=True))
  score2 = metrics.accuracy_score(y_test, predictions2)

  # In many applications, the score is improved by using early stopping
  print('score1: ', score1)
  print('score2: ', score2)
  print('score2 > score1: ', score2 > score1) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:40,代碼來源:iris_val_based_early_stopping.py

示例9: main

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def main(unused_argv):
  # Load dataset.
  iris = learn.datasets.load_dataset('iris')
  x_train, x_test, y_train, y_test = cross_validation.train_test_split(
      iris.data, iris.target, test_size=0.2, random_state=42)

  # Note that we are saving and load iris data as h5 format as a simple
  # demonstration here.
  h5f = h5py.File('/tmp/test_hdf5.h5', 'w')
  h5f.create_dataset('X_train', data=x_train)
  h5f.create_dataset('X_test', data=x_test)
  h5f.create_dataset('y_train', data=y_train)
  h5f.create_dataset('y_test', data=y_test)
  h5f.close()

  h5f = h5py.File('/tmp/test_hdf5.h5', 'r')
  x_train = np.array(h5f['X_train'])
  x_test = np.array(h5f['X_test'])
  y_train = np.array(h5f['y_train'])
  y_test = np.array(h5f['y_test'])

  # Build 3 layer DNN with 10, 20, 10 units respectively.
  feature_columns = learn.infer_real_valued_columns_from_input(x_train)
  classifier = learn.DNNClassifier(
      feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3)

  # Fit and predict.
  classifier.fit(x_train, y_train, steps=200)
  score = metrics.accuracy_score(y_test, classifier.predict(x_test))
  print('Accuracy: {0:f}'.format(score)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:32,代碼來源:hdf5_classification.py

示例10: get_model

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def get_model(filename=CLASSIFIER_FILE):
    ''' Get CNN classifier object from file or create one if none exists on file.'''
    if(filename == None):
        # Load dataset
        print(Helper.unserialize("../Datasets/raw_new_80.data"))
        train_data, train_targets, test_data, expected = get_featureset('raw')

        raw_train_data = np.zeros((train_data.shape[0], 20, 20))
        i = 0
        for item in train_data:
            raw_train_data[i] = item.reshape((20,20))
            #Display.show_image(raw_train_data[i])
            i = i+1

        raw_test_data = np.zeros((test_data.shape[0], 20, 20))
        i = 0
        for item in test_data:
            raw_test_data[i] = item.reshape((20,20))
            #Display.show_image(raw_test_data[i])
            i = i+1


        # Build Classifier
        # classifier = skflow.TensorFlowEstimator(model_fn=multilayer_conv_model, n_classes=2,
        #                                         steps=500, learning_rate=0.05, batch_size=128)
        classifier = skflow.DNNClassifier(feature_engineering_fn=conv_model, n_classes=2)
        classifier.fit(raw_train_data, train_targets)

        # Assess built classifier
        predictions = classifier.predict(raw_test_data)
        accuracy = metrics.accuracy_score(expected, predictions)
        confusion_matrix = metrics.confusion_matrix(expected, predictions)
        print("Confusion matrix:\n%s" % confusion_matrix)
        print('Accuracy: %f' % accuracy)

        return classifier
    else:
        serialized_classifier = Helper.unserialize(filename)
        return serialized_classifier 
開發者ID:oduwa,項目名稱:Pic-Numero,代碼行數:41,代碼來源:CNN.py

示例11: predDNNTF

# 需要導入模塊: from tensorflow.contrib import learn [as 別名]
# 或者: from tensorflow.contrib.learn import DNNClassifier [as 別名]
def predDNNTF(clf, le, R, Cl):
    import tensorflow as tf
    #import tensorflow.contrib.learn as skflow
    from sklearn import preprocessing

    predict_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": R},
      num_epochs=1,
      shuffle=False)
      
    predictions = list(clf.predict(input_fn=predict_input_fn))
    if dnntfDef.useRegressor == False:
        pred_class = [p["class_ids"] for p in predictions][0][0]
    
        if pred_class.size >0:
            predValue = le.inverse_transform([pred_class])[0]
        else:
            predValue = 0
        prob = [p["probabilities"] for p in predictions][0]
        predProb = round(100*prob[pred_class],2)
        rosterPred = np.where(prob>dnntfDef.thresholdProbabilityPred/100)[0]
        print('\n  =============================================')
        print('  \033[1mtf.DNN Classifier-TF\033[0m - Probability >',str(dnntfDef.thresholdProbabilityPred),'%')
        print('  =============================================')
        print('  Prediction\tProbability [%]')
        for i in range(rosterPred.shape[0]):
            print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.4f}'.format(100*prob[rosterPred][i])))
        print('  =============================================')
    
        print('\033[1m' + '\n Predicted value (tf.DNNClassifier) = ' + str(predValue) +
            '  (probability = ' + str(predProb) + '%)\033[0m\n')
    else:
        pred = [p["predictions"] for p in predictions][0][0]
        predProb = 0
        if pred.size >0:
            predValue = pred
        else:
            predValue = 0
        print('\n  ==================================')
        print('  \033[1mtf.DNN Regressor - TF\033[0m')
        print('  ==================================')
        print('\033[1m' + '\n Predicted value (tf.DNNRegressor) = ' + str(predValue) +'\033[0m\n')

    return predValue, predProb

#******************************************************************************** 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:48,代碼來源:slp_dnntf.py


注:本文中的tensorflow.contrib.learn.DNNClassifier方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。