當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.xavier_initializer_conv2d方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.xavier_initializer_conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.xavier_initializer_conv2d方法的具體用法?Python layers.xavier_initializer_conv2d怎麽用?Python layers.xavier_initializer_conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.xavier_initializer_conv2d方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: conv2d_transpose_layer

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def conv2d_transpose_layer(inputs, filters, activation, name):
    """
    A simple de-convolution layer.
    :param inputs: batch of inputs.
    :param filters: number of output filters.
    :param activation: activation function to use.
    :param name: name used to scope this operation.
    :return: batch of outputs.
     """
    return tf.layers.conv2d_transpose(
        inputs=inputs,
        filters=filters,
        kernel_size=(4, 4),
        strides=(2, 2),
        padding='same',
        activation=activation,
        data_format='channels_last',
        use_bias=False,
        kernel_initializer=xavier_initializer_conv2d(uniform=False),
        name=name,
        reuse=tf.AUTO_REUSE) 
開發者ID:Gordonjo,項目名稱:versa,代碼行數:23,代碼來源:utilities.py

示例2: upsample_conv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def upsample_conv(inputs, num_outputs, kernel_size, sn, activation_fn=None,
                  normalizer_fn=None, normalizer_params=None,
                  weights_regularizer=None,
                  weights_initializer=ly.xavier_initializer_conv2d(),
                  biases_initializer=tf.zeros_initializer(),
                  data_format='NCHW'):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1 if data_format == 'NCHW' else 3)
    if data_format == 'NCHW':
        output = tf.transpose(output, [0, 2, 3, 1])
    output = tf.depth_to_space(output, 2)
    if data_format == 'NCHW':
        output = tf.transpose(output, [0, 3, 1, 2])
    output = conv2d(output, num_outputs, kernel_size, sn=sn, activation_fn=activation_fn,
                    normalizer_fn=normalizer_fn, normalizer_params=normalizer_params,
                    weights_regularizer=weights_regularizer, weights_initializer=weights_initializer,
                    biases_initializer=biases_initializer,
                    data_format=data_format)
    return output 
開發者ID:SketchyScene,項目名稱:SketchySceneColorization,代碼行數:21,代碼來源:mru.py

示例3: conv_op

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def conv_op(input_op, filter_size, channel_out, step, name):
    channel_in = input_op.get_shape()[-1].value
    with tf.name_scope(name) as scope:
        weights = tf.get_variable(shape=[filter_size, filter_size, channel_in, channel_out], dtype=tf.float32,
                                  initializer=xavier_initializer_conv2d(), name=scope + 'weights')
        biases = tf.Variable(tf.constant(value=0.0, shape=[channel_out], dtype=tf.float32),
                             trainable=True, name='biases')
        conv = tf.nn.conv2d(input_op, weights, strides=[1, step, step, 1], padding='SAME') + biases
        conv = tf.nn.relu(conv, name=scope)
        return conv 
開發者ID:skloisMary,項目名稱:demo-Network,代碼行數:12,代碼來源:VGGNet.py

示例4: full_connection

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def full_connection(input_op, channel_out, name):
    channel_in = input_op.get_shape()[-1].value
    with tf.name_scope(name) as scope:
        weight = tf.get_variable(shape=[channel_in, channel_out], dtype=tf.float32,
                                 initializer=xavier_initializer_conv2d(), name=scope + 'weight')
        bias = tf.Variable(tf.constant(value=0.0, shape=[channel_out], dtype=tf.float32), name='bias')
        fc = tf.nn.relu_layer(input_op, weight, bias, name=scope)
        return fc 
開發者ID:skloisMary,項目名稱:demo-Network,代碼行數:10,代碼來源:VGGNet.py

示例5: conv2d_pool_block

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def conv2d_pool_block(inputs, use_batch_norm, dropout_keep_prob, pool_padding, name):
    """
    A macro function that implements the following in sequence:
    - conv2d
    - batch_norm
    - relu activation
    - dropout
    - max_pool
    :param inputs: batch of feature maps.
    :param use_batch_norm: whether to use batch normalization or not.
    :param dropout_keep_prob: keep probability parameter for dropout.
    :param pool_padding: type of padding to use on the pooling operation.
    :param name: first part of the name used to scope this sequence of operations.
    :return: the processed batch of feature maps.
    """
    h = tf.layers.conv2d(
        inputs=inputs,
        strides=(1, 1),
        filters=64,
        kernel_size=[3, 3],
        padding="same",
        kernel_initializer=xavier_initializer_conv2d(uniform=False),
        use_bias=False,
        name=(name + '_conv2d'),
        reuse=tf.AUTO_REUSE)

    if use_batch_norm:
        h = tf.contrib.layers.batch_norm(
            inputs=h,
            epsilon=1e-5,
            scope=(name + '_batch_norm'),
            reuse=tf.AUTO_REUSE)

    h = tf.nn.relu(features=h, name=(name + '_batch_relu'))

    h = tf.nn.dropout(x=h, keep_prob=dropout_keep_prob, name=(name + '_dropout'))

    h = tf.layers.max_pooling2d(inputs=h, pool_size=[2, 2], strides=2, padding=pool_padding, name=(name + '_pool'))

    return h 
開發者ID:Gordonjo,項目名稱:versa,代碼行數:42,代碼來源:utilities.py

示例6: conv_block

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def conv_block(input_tensor, kernel, filters, name, strides=(2, 2)):
    """ Function to create block of ResNet network which include
    three convolution layers and one skip-connection layer.

    Args:
        input_tensor: input tensorflow layer
        kernel: tuple of kernel size in convolution layer
        filters: list of nums filters in convolution layers
        name: name of block
        strides: typle of strides in convolution layer

    Output:
        x: Block output layer """
    filters1, filters2, filters3 = filters
    x = tf.layers.conv2d(input_tensor, filters1, (1, 1), strides, name='convfir' + name, activation=tf.nn.relu,\
                         kernel_initializer=xavier())

    x = tf.layers.conv2d(x, filters2, kernel, name='convsec' + name, activation=tf.nn.relu, padding='SAME',\
                         kernel_initializer=xavier())

    x = tf.layers.conv2d(x, filters3, (1, 1), name='convthr' + name,\
                         kernel_initializer=xavier())

    shortcut = tf.layers.conv2d(input_tensor, filters3, (1, 1), strides, name='short' + name, \
                         kernel_initializer=xavier())
    x = tf.concat([x, shortcut], axis=1)
    x = tf.nn.relu(x)
    return x 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:30,代碼來源:batch.py

示例7: identity_block

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def identity_block(input_tensor, kernel, filters, name):
    """ Function to create block of ResNet network which include
    three convolution layers.

    Args:
        input_tensor: input tensorflow layer.
        kernel: tuple of kernel size in convolution layer.
        filters: list of nums filters in convolution layers.
        name: name of block.

    Output:
        x: Block output layer """
    filters1, filters2, filters3 = filters
    x = tf.layers.conv2d(input_tensor, filters1, (1, 1), name='convfir' + name, activation=tf.nn.relu,\
                         kernel_initializer=xavier())

    x = tf.layers.conv2d(x, filters2, kernel, name='convsec' + name, activation=tf.nn.relu, padding='SAME',\
                         kernel_initializer=xavier())

    x = tf.layers.conv2d(x, filters3, (1, 1), name='convthr' + name,\
                         kernel_initializer=xavier())


    x = tf.concat([x, input_tensor], axis=1)
    x = tf.nn.relu(x)
    return x 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:28,代碼來源:batch.py

示例8: conv_mean_pool

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def conv_mean_pool(inputs, num_outputs, kernel_size, sn, rate=1,
                   activation_fn=None,
                   normalizer_fn=None, normalizer_params=None,
                   weights_regularizer=None,
                   weights_initializer=ly.xavier_initializer_conv2d(),
                   biases_initializer=tf.zeros_initializer(),
                   data_format='NCHW'):
    output = conv2d(inputs, num_outputs, kernel_size, sn=sn, rate=rate, activation_fn=activation_fn,
                    normalizer_fn=normalizer_fn, normalizer_params=normalizer_params,
                    weights_regularizer=weights_regularizer, weights_initializer=weights_initializer,
                    biases_initializer=biases_initializer,
                    data_format=data_format)
    output = tf.add_n(
        [output[:, :, ::2, ::2], output[:, :, 1::2, ::2], output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
    return output 
開發者ID:SketchyScene,項目名稱:SketchySceneColorization,代碼行數:17,代碼來源:mru.py

示例9: mean_pool_conv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def mean_pool_conv(inputs, num_outputs, kernel_size, sn, rate=1,
                   activation_fn=None,
                   normalizer_fn=None, normalizer_params=None,
                   weights_regularizer=None,
                   weights_initializer=ly.xavier_initializer_conv2d(),
                   data_format='NCHW'):
    output = inputs
    output = tf.add_n(
        [output[:, :, ::2, ::2], output[:, :, 1::2, ::2], output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
    output = conv2d(output, num_outputs, kernel_size, sn=sn, rate=rate, activation_fn=activation_fn,
                    normalizer_fn=normalizer_fn, normalizer_params=normalizer_params,
                    weights_regularizer=weights_regularizer, weights_initializer=weights_initializer,
                    data_format=data_format)
    return output 
開發者ID:SketchyScene,項目名稱:SketchySceneColorization,代碼行數:16,代碼來源:mru.py

示例10: upsample_conv_bilinear

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def upsample_conv_bilinear(inputs, num_outputs, kernel_size, sn, activation_fn=None,
                           normalizer_fn=None, normalizer_params=None,
                           weights_regularizer=None,
                           weights_initializer=ly.xavier_initializer_conv2d(),
                           data_format='NCHW'):
    output = inputs
    if data_format == 'NCHW':
        output = tf.transpose(output, [0, 2, 3, 1])
    batch_size, height, width, channel = [int(i) for i in output.get_shape()]
    # output = tf.Print(output, [tf.reduce_min(output), tf.reduce_max(output)], message='before')
    output = tf.image.resize_bilinear(output, [height * 2, width * 2])
    # output = tf.Print(output, [tf.reduce_min(output), tf.reduce_max(output)], message='after')
    slice0 = output[:, :, :, 0::4]
    slice1 = output[:, :, :, 1::4]
    slice2 = output[:, :, :, 2::4]
    slice3 = output[:, :, :, 3::4]
    output = slice0 + slice1 + slice2 + slice3
    if data_format == 'NCHW':
        output = tf.transpose(output, [0, 3, 1, 2])
    output = conv2d(output, num_outputs, kernel_size, sn=sn, activation_fn=activation_fn,
                    normalizer_fn=normalizer_fn, normalizer_params=normalizer_params,
                    weights_regularizer=weights_regularizer, weights_initializer=weights_initializer,
                    data_format=data_format)
    return output


# Sigmoid Gates 
開發者ID:SketchyScene,項目名稱:SketchySceneColorization,代碼行數:29,代碼來源:mru.py

示例11: resnet

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def resnet(self):
        """ Simple implementation of Resnet.
        Args:
            self

        Outputs:
            Method return list with len = 2 and some params:
            [0][0]: indices - Placeholder which takes batch indices.
            [0][1]: all_data - Placeholder which takes all images.
            [0][2]; all_lables - Placeholder for lables.
            [0][3]: loss - Value of loss function.
            [0][4]: train - List of train optimizers.
            [0][5]: prob - softmax output, need to prediction.

            [1][0]: accuracy - Current accuracy
            [1][1]: session - tf session """
        with tf.Graph().as_default():
            indices = tf.placeholder(tf.int32, shape=[None, 1])
            all_data = tf.placeholder(tf.float32, shape=[50000, 28, 28])
            input_batch = tf.gather_nd(all_data, indices)
            x1_to_tens = tf.reshape(input_batch, shape=[-1, 28, 28, 1])

            net1 = tf.layers.conv2d(x1_to_tens, 32, (7, 7), strides=(2, 2), padding='SAME', activation=tf.nn.relu, \
                kernel_initializer=xavier(), name='11')
            net1 = tf.layers.max_pooling2d(net1, (2, 2), (2, 2))

            net1 = conv_block(net1, 3, [32, 32, 128], name='22', strides=(1, 1))

            net1 = identity_block(net1, 3, [32, 32, 128], name='33')

            net1 = conv_block(net1, 3, [64, 64, 256], name='53', strides=(1, 1))
            net1 = identity_block(net1, 3, [64, 64, 256], name='63')

            net1 = tf.layers.average_pooling2d(net1, (7, 7), strides=(1, 1))
            net1 = tf.contrib.layers.flatten(net1)

            with tf.variable_scope('dense3'):
                net1 = tf.layers.dense(net1, 10, kernel_initializer=tf.contrib.layers.xavier_initializer())


            prob1 = tf.nn.softmax(net1)
            all_lables = tf.placeholder(tf.float32, [None, 10])

            y = tf.gather_nd(all_lables, indices)

            loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=net1, labels=y), name='loss3')
            train1 = tf.train.MomentumOptimizer(0.03, 0.8, use_nesterov=True).minimize(loss1)
            lables_hat1 = tf.cast(tf.argmax(net1, axis=1), tf.float32, name='lables_3at')
            lables1 = tf.cast(tf.argmax(y, axis=1), tf.float32, name='labl3es')

            accuracy1 = tf.reduce_mean(tf.cast(tf.equal(lables_hat1, lables1), tf.float32, name='a3ccuracy'))
            session = tf.Session()
            session.run(tf.global_variables_initializer())
        return [[indices, all_data, all_lables, loss1, train1, prob1], [accuracy1, session]] 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:56,代碼來源:batch.py

示例12: mru_deconv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer_conv2d [as 別名]
def mru_deconv(x, ht, filter_depth, sn, stride=2, num_blocks=2,
               last_unit=False,
               activation_fn=tf.nn.relu,
               normalizer_fn=None,
               normalizer_params=None,
               weights_initializer=ly.xavier_initializer_conv2d(),
               weight_decay_rate=1e-5,
               unit_num=0, data_format='NCHW'):
    assert len(ht) == num_blocks

    def norm_activ(tensor_in):
        if normalizer_fn is not None:
            _normalizer_params = normalizer_params or {}
            tensor_normed = normalizer_fn(tensor_in, **_normalizer_params)
        else:
            tensor_normed = tf.identity(tensor_in)
        if activation_fn is not None:
            tensor_normed = activation_fn(tensor_normed)

        return tensor_normed

    # cell_block = mru_deconv_block
    cell_block = mru_deconv_block_v2

    hts_new = []
    inp = x
    with tf.variable_scope('mru_deconv_unit_t_%d_layer_0' % unit_num):
        ht_new = cell_block(inp, ht[0], filter_depth, sn=sn, stride=stride,
                            activation_fn=activation_fn,
                            normalizer_fn=normalizer_fn,
                            normalizer_params=normalizer_params,
                            weights_initializer=weights_initializer,
                            data_format=data_format,
                            weight_decay_rate=weight_decay_rate)
        hts_new.append(ht_new)
        inp = ht_new

    for i in range(1, num_blocks):
        if stride == 2:
            ht[i] = upsample(ht[i], data_format=data_format)
        with tf.variable_scope('mru_deconv_unit_t_%d_layer_%d' % (unit_num, i)):
            ht_new = cell_block(inp, ht[i], filter_depth, sn=sn, stride=1,
                                activation_fn=activation_fn,
                                normalizer_fn=normalizer_fn,
                                normalizer_params=normalizer_params,
                                weights_initializer=weights_initializer,
                                data_format=data_format,
                                weight_decay_rate=weight_decay_rate)
            hts_new.append(ht_new)
            inp = ht_new

    # if last_unit:
    #     with tf.variable_scope('mru_deconv_unit_last_norm'):
    #         hts_new[-1] = norm_activ(hts_new[-1])

    return hts_new 
開發者ID:SketchyScene,項目名稱:SketchySceneColorization,代碼行數:58,代碼來源:mru.py


注:本文中的tensorflow.contrib.layers.xavier_initializer_conv2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。