當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.xavier_initializer方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.xavier_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.xavier_initializer方法的具體用法?Python layers.xavier_initializer怎麽用?Python layers.xavier_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.xavier_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def build(self, input_shape):
        """
        Input shape is (None, 10, 7, 7, 1024)
        :param input_shape:
        :return:
        """

        assert len(input_shape) == 5

        _, self.n_timesteps_in, self.side_dim1, self.side_dim2, self.n_channels = input_shape

        initializer = contrib_layers.xavier_initializer()

        weight_shape = [self.n_channels, self.n_timesteps_in, self.n_timesteps_out]
        bias_shape = [self.n_channels, 1, self.n_timesteps_out]

        with tf.variable_scope(self.name) as scope:
            self.conv_weights = tf.get_variable('dense_weights', shape=weight_shape, initializer=initializer)
            self.conv_biases = tf.get_variable('dense_biases', shape=bias_shape, initializer=tf.constant_initializer(0.1))

        self.trainable_weights = [self.conv_weights, self.conv_biases]

        super(DepthwiseDenseLayer, self).build(input_shape) 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:25,代碼來源:layers_keras.py

示例2: _build_net

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def _build_net(self, input_BO, scope):
        """ The Actor network.
        
        Uses ReLUs for all hidden layers, but a tanh to the output to bound the
        action. This follows their 'low-dimensional networks' using 400 and 300
        units for the hidden layers. Set `reuse=False`. I don't use batch
        normalization or their precise weight initialization.
        """
        with tf.variable_scope(scope, reuse=False):
            hidden1 = layers.fully_connected(input_BO,
                    num_outputs=400,
                    weights_initializer=layers.xavier_initializer(),
                    activation_fn=tf.nn.relu)
            hidden2 = layers.fully_connected(hidden1, 
                    num_outputs=300,
                    weights_initializer=layers.xavier_initializer(),
                    activation_fn=tf.nn.relu)
            actions_BA = layers.fully_connected(hidden2,
                    num_outputs=self.ac_dim,
                    weights_initializer=layers.xavier_initializer(),
                    activation_fn=tf.nn.tanh) # Note the tanh!
            # This should broadcast, but haven't tested with ac_dim > 1.
            actions_BA = tf.multiply(actions_BA, self.ac_high)
            return actions_BA 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:26,代碼來源:ddpg.py

示例3: _make_network

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def _make_network(self, data_in, out_dim):
        """ Build the network with the same architecture following OpenAI's paper.

        Returns the final *layer* of the network, which corresponds to our
        chosen action.  There is no non-linearity for the last layer because
        different envs have different action ranges.
        """
        with tf.variable_scope("ESAgent", reuse=False):
            out = data_in
            out = layers.fully_connected(out, num_outputs=64,
                    weights_initializer = layers.xavier_initializer(uniform=True),
                    #weights_initializer = utils.normc_initializer(0.5),
                    activation_fn = tf.nn.tanh)
            out = layers.fully_connected(out, num_outputs=64,
                    weights_initializer = layers.xavier_initializer(uniform=True),
                    #weights_initializer = utils.normc_initializer(0.5),
                    activation_fn = tf.nn.tanh)
            out = layers.fully_connected(out, num_outputs=out_dim,
                    weights_initializer = layers.xavier_initializer(uniform=True),
                    #weights_initializer = utils.normc_initializer(0.5),
                    activation_fn = None)
            return out 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:24,代碼來源:es.py

示例4: _create_embeddings

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def _create_embeddings(self, device='/cpu:0'):
        """ Create all embedding matrices in this function.

        :param device: The storage device of all the embeddings. If
                        you are using multi-gpus, it is ideal to store
                        the embeddings on CPU to avoid costly GPU-to-GPU
                        memory copying. The embeddings should be stored under
                        variable scope self.embedding_scope
        :return:
        """
        with tf.device(device):
            with tf.variable_scope(self.embedding_scope):
                self.word_embedding = tf.get_variable('word_embedding',
                                                      [self.n_vocab + self.word_oov, self.word_embedding_size],
                                                      dtype=tf.float32,
                                                      initializer=layers.xavier_initializer()) 
開發者ID:bxshi,項目名稱:ConMask,代碼行數:18,代碼來源:content_model.py

示例5: _create_embeddings

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def _create_embeddings(self, device='/cpu:0'):
        """ Create all embedding matrices in this function.

               :param device: The storage device of all the embeddings. If
                               you are using multi-gpus, it is ideal to store
                               the embeddings on CPU to avoid costly GPU-to-GPU
                               memory copying. The embeddings should be stored under
                               variable scope self.embedding_scope
               :return:
               """
        with tf.device(device):
            with tf.variable_scope(self.embedding_scope):
                self.word_embedding = tf.get_variable('word_embedding',
                                                      [self.n_vocab + self.word_oov, self.word_embedding_size],
                                                      dtype=tf.float32,
                                                      initializer=layers.xavier_initializer(),
                                                      trainable=not self.fix_embedding) 
開發者ID:bxshi,項目名稱:ConMask,代碼行數:19,代碼來源:fcn_model_v2.py

示例6: dense_layer

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def dense_layer(inputs, output_size, activation, use_bias, name):
    """
    A simple dense layer.
    :param inputs: batch of inputs.
    :param output_size: dimensionality of the output.
    :param activation: activation function to use.
    :param use_bias: whether to have bias weights or not.
    :param name: name used to scope this operation.
    :return: batch of outputs.
     """
    return tf.layers.dense(
        inputs=inputs,
        units=output_size,
        kernel_initializer=xavier_initializer(uniform=False),
        use_bias=use_bias,
        bias_initializer=tf.random_normal_initializer(stddev=1e-3),
        activation=activation,
        name=name,
        reuse=tf.AUTO_REUSE) 
開發者ID:Gordonjo,項目名稱:versa,代碼行數:21,代碼來源:utilities.py

示例7: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def __init__(self,
                 config,
                 args,
                 word_vecs,
                 init = tf.random_uniform_initializer(minval=-0.01, maxval=0.01), # init = layers.xavier_initializer(),
                 name='HATN'):

        self.cfg       = config
        self.args      = args
        self.word_vecs =  word_vecs
        self.init      = init
        self.name      = name

        self.memory_size    = self.cfg.memory_size
        self.sent_size      = self.cfg.sent_size
        self.embed_size     = self.cfg.embed_size
        self.hidden_size    = self.cfg.hidden_size
        self.l2_reg_lambda  = self.cfg.l2_reg_lambda
        self.max_grad_norm  = self.cfg.max_grad_norm
        self.hops           = self.cfg.hops

        self.build_vars()
        self.build_eval_op() 
開發者ID:hsqmlzno1,項目名稱:HATN,代碼行數:25,代碼來源:hatn.py

示例8: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def __init__(self,
                 config,
                 args,
                 word_vecs,
                 init = tf.random_uniform_initializer(minval=-0.01, maxval=0.01), # init = layers.xavier_initializer(),
                 name='PNet'):

        self.cfg       = config
        self.args      = args
        self.word_vecs =  word_vecs
        self.init      = init
        self.name      = name

        self.memory_size    = self.cfg.memory_size
        self.sent_size      = self.cfg.sent_size
        self.embed_size     = self.cfg.embed_size
        self.hidden_size    = self.cfg.hidden_size
        self.l2_reg_lambda  = self.cfg.l2_reg_lambda
        self.max_grad_norm  = self.cfg.max_grad_norm
        self.hops           = self.cfg.hops

        self.build_vars()
        self.build_eval_op() 
開發者ID:hsqmlzno1,項目名稱:HATN,代碼行數:25,代碼來源:pnet.py

示例9: inference

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def inference(input_images):
    with slim.arg_scope([slim.conv2d], kernel_size=3, padding='SAME'):
        with slim.arg_scope([slim.max_pool2d], kernel_size=2):
            x = slim.conv2d(input_images, num_outputs=32, weights_initializer=initializers.xavier_initializer(),
                            scope='conv1_1')
            x = slim.conv2d(x, num_outputs=32, weights_initializer=initializers.xavier_initializer(), scope='conv1_2')
            x = slim.max_pool2d(x, scope='pool1')
            x = slim.conv2d(x, num_outputs=64, weights_initializer=initializers.xavier_initializer(), scope='conv2_1')
            x = slim.conv2d(x, num_outputs=64, weights_initializer=initializers.xavier_initializer(), scope='conv2_2')
            x = slim.max_pool2d(x, scope='pool2')
            x = slim.conv2d(x, num_outputs=128, weights_initializer=initializers.xavier_initializer(), scope='conv3_1')
            x = slim.conv2d(x, num_outputs=128, weights_initializer=initializers.xavier_initializer(), scope='conv3_2')
            x = slim.max_pool2d(x, scope='pool3')
            x = slim.flatten(x, scope='flatten')
            feature = slim.fully_connected(x, num_outputs=2, activation_fn=None, scope='fc1')
            x = tflearn.prelu(feature)
            x = slim.fully_connected(x, num_outputs=10, activation_fn=None, scope='fc2')
    return x, feature 
開發者ID:kjanjua26,項目名稱:Git-Loss-For-Deep-Face-Recognition,代碼行數:20,代碼來源:gitloss.py

示例10: EncoderPCNN

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def EncoderPCNN(self, is_training, init_vec=None):
        
        with tf.variable_scope("sentence-encoder", dtype=tf.float32, initializer=xavier(), reuse=tf.AUTO_REUSE):
            input_dim = self.input_embedding.shape[2]
            mask_embedding = tf.constant([[0,0,0],[1,0,0],[0,1,0],[0,0,1]], dtype=np.float32)
            pcnn_mask = tf.nn.embedding_lookup(mask_embedding, self.mask)
            input_sentence = tf.expand_dims(self.input_embedding, axis=1)
            with tf.variable_scope("conv2d"):
                conv_kernel = self._GetVar(init_vec=init_vec,key='convkernel',name='kernel',
                    shape=[1,3,input_dim,FLAGS.hidden_size],trainable=True)
                conv_bias = self._GetVar(init_vec=init_vec,key='convbias',name='bias',shape=[FLAGS.hidden_size],trainable=True)
            x = tf.layers.conv2d(inputs = input_sentence, filters=FLAGS.hidden_size, 
                kernel_size=[1,3], strides=[1, 1], padding='same', reuse=tf.AUTO_REUSE)
            x = tf.reshape(x, [-1, FLAGS.max_length, FLAGS.hidden_size, 1])
            x = tf.reduce_max(tf.reshape(pcnn_mask, [-1, 1, FLAGS.max_length, 3]) * tf.transpose(x,[0, 2, 1, 3]), axis = 2)
            x = tf.nn.relu(tf.reshape(x, [-1, FLAGS.hidden_size * 3]))

        return x 
開發者ID:thunlp,項目名稱:HNRE,代碼行數:20,代碼來源:network.py

示例11: EncoderLSTM

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def EncoderLSTM(self, is_training, init_vec=None):

        with tf.variable_scope("sentence-encoder", dtype=tf.float32, initializer=xavier(), reuse=tf.AUTO_REUSE):
            input_sentence = tf.layers.dropout(self.input_embedding, rate = self.keep_prob, training = is_training)
            fw_cell = tf.contrib.rnn.BasicLSTMCell(FLAGS.hidden_size, state_is_tuple=True)
            bw_cell = tf.contrib.rnn.BasicLSTMCell(FLAGS.hidden_size, state_is_tuple=True)
            outputs, states = tf.nn.bidirectional_dynamic_rnn(
                            fw_cell, bw_cell, input_sentence,
                            sequence_length = self.len,
                            dtype = tf.float32,
                            scope = 'bi-dynamic-rnn')
            fw_states, bw_states = states
            if isinstance(fw_states, tuple):
                fw_states = fw_states[0]
                bw_states = bw_states[0]
            x = tf.concat(states, axis=1)
            
        return x 
開發者ID:thunlp,項目名稱:HNRE,代碼行數:20,代碼來源:network.py

示例12: conv2d_transpose

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def conv2d_transpose(
        inputs,
        out_shape,
        kernel_size=(5, 5),
        stride=(1, 1),
        activation_fn=tf.nn.relu,
        normalizer_fn=None,
        normalizer_params=None,
        weights_initializer=layers.xavier_initializer(),
        scope=None,
        reuse=None):
    batchsize = tf.shape(inputs)[0]
    in_channels = int(inputs.get_shape()[-1])

    output_shape = tf.stack([batchsize, out_shape[0],
                             out_shape[1], out_shape[2]])
    filter_shape = [kernel_size[0], kernel_size[1], out_shape[2], in_channels]

    with tf.variable_scope(scope, 'Conv2d_transpose', [inputs], reuse=reuse):
        w = tf.get_variable('weights', filter_shape,
                            initializer=weights_initializer)

        outputs = tf.nn.conv2d_transpose(
            inputs, w, output_shape=output_shape,
            strides=[1, stride[0], stride[1], 1])
        outputs.set_shape([None] + out_shape)

        if not normalizer_fn:
            biases = tf.get_variable('biases', [out_shape[2]],
                                     initializer=tf.constant_initializer(0.0))
            outputs = tf.nn.bias_add(outputs, biases)

        if normalizer_fn is not None:
            normalizer_params = normalizer_params or {}
            outputs = normalizer_fn(outputs, **normalizer_params)

        if activation_fn is not None:
            outputs = activation_fn(outputs)

    return outputs 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:42,代碼來源:utils.py

示例13: policy_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def policy_model(data_in, action_dim):
    """ Create a neural network representing the BC policy. It will be trained
    using standard supervised learning techniques.
    
    Parameters
    ----------
    data_in: [Tensor]
        The input (a placeholder) to the network, with leading dimension
        representing the batch size.
    action_dim: [int]
        Number of actions, each of which (at least for MuJoCo) is
        continuous-valued.

    Returns
    ------- 
    out [Tensor]
        The output tensor which represents the predicted (or desired, if
        testing) action to take for the agent.
    """
    with tf.variable_scope("BCNetwork", reuse=False):
        out = data_in
        out = layers.fully_connected(out, num_outputs=100,
                weights_initializer=layers.xavier_initializer(uniform=True),
                activation_fn=tf.nn.tanh)
        out = layers.fully_connected(out, num_outputs=100,
                weights_initializer=layers.xavier_initializer(uniform=True),
                activation_fn=tf.nn.tanh)
        out = layers.fully_connected(out, num_outputs=action_dim,
                weights_initializer=layers.xavier_initializer(uniform=True),
                activation_fn=None)
        return out 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:33,代碼來源:bc.py

示例14: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def __init__(self, session, ob_dim=None, n_epochs=20, stepsize=1e-3):
        """ The network gets constructed upon initialization so future calls to
        self.fit will remember this. 
        
        Right now we assume a preprocessing which results ob_dim*2+1 dimensions,
        and we assume a fixed neural network architecture (input-50-50-1, fully
        connected with tanh nonlineariites), which we should probably change.

        The number of outputs is one, so that ypreds_n is the predicted vector
        of state values, to be compared against ytargs_n. Since ytargs_n is of
        shape (n,), we need to apply a "squeeze" on the final predictions, which
        would otherwise be of shape (n,1). Bleh.
        """
        # Value function V(s_t) (or b(s_t)), parameterized as a neural network.
        self.ob_no = tf.placeholder(shape=[None, ob_dim*2+1], name="nnvf_ob", dtype=tf.float32)
        self.h1 = layers.fully_connected(self.ob_no, 
                num_outputs=50,
                weights_initializer=layers.xavier_initializer(uniform=True),
                activation_fn=tf.nn.tanh)
        self.h2 = layers.fully_connected(self.h1,
                num_outputs=50,
                weights_initializer=layers.xavier_initializer(uniform=True),
                activation_fn=tf.nn.tanh)
        self.ypreds_n = layers.fully_connected(self.h2,
                num_outputs=1,
                weights_initializer=layers.xavier_initializer(uniform=True),
                activation_fn=None)
        self.ypreds_n = tf.reshape(self.ypreds_n, [-1]) # (?,1) --> (?,). =)

        # Form the loss function, which is the simple (mean) L2 error.
        self.n_epochs = n_epochs
        self.lrate    = stepsize
        self.ytargs_n = tf.placeholder(shape=[None], name="nnvf_y", dtype=tf.float32)
        self.l2_error = tf.reduce_mean(tf.square(self.ypreds_n - self.ytargs_n))
        self.fit_op   = tf.train.AdamOptimizer(self.lrate).minimize(self.l2_error)
        self.sess     = session 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:38,代碼來源:value_functions.py

示例15: add_predictions

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import xavier_initializer [as 別名]
def add_predictions(net, end_points):
  pose_xyz = tf.layers.dense(
      net, 3, name='cls3_fc_pose_xyz', kernel_initializer=xavier_initializer())
  end_points['cls3_fc_pose_xyz'] = pose_xyz
  pose_wpqr = tf.layers.dense(
      net,
      4,
      name='cls3_fc_pose_wpqr',
      kernel_initializer=xavier_initializer())
  end_points['cls3_fc_pose_wpqr'] = pose_wpqr 
開發者ID:futurely,項目名稱:deep-camera-relocalization,代碼行數:12,代碼來源:net_builder.py


注:本文中的tensorflow.contrib.layers.xavier_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。