當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.variance_scaling_initializer方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.variance_scaling_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.variance_scaling_initializer方法的具體用法?Python layers.variance_scaling_initializer怎麽用?Python layers.variance_scaling_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.variance_scaling_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: darkconv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def darkconv(*args, **kwargs):
    scope = kwargs.pop('scope', None)
    onlyconv = kwargs.pop('onlyconv', False)
    with tf.variable_scope(scope):
        conv_kwargs = {
            'padding': 'SAME',
            'activation_fn': None,
            'weights_initializer': variance_scaling_initializer(1.53846),
            'weights_regularizer': l2(5e-4),
            'biases_initializer': None,
            'scope': 'conv'}
        if onlyconv:
            conv_kwargs.pop('biases_initializer')
        with arg_scope([conv2d], **conv_kwargs):
            x = conv2d(*args, **kwargs)
            if onlyconv: return x
            x = batch_norm(x, decay=0.99, center=False, scale=True,
                           epsilon=1e-5, scope='bn')
            x = bias_add(x, scope='bias')
            x = leaky_relu(x, alpha=0.1, name='lrelu')
            return x 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:23,代碼來源:layers.py

示例2: conv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def conv(x, channels, kernel=3, stride=2, pad=0, normal_weight_init=False, activation_fn='leaky', scope='conv_0') :
    with tf.variable_scope(scope) :
        x = tf.pad(x, [[0,0], [pad, pad], [pad, pad], [0,0]])

        if normal_weight_init :
            x = tf.layers.conv2d(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
                                 strides=stride, kernel_regularizer=tf_contrib.layers.l2_regularizer(scale=0.0001))

        else :
            if activation_fn == 'relu' :
                x = tf.layers.conv2d(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=he_init(), strides=stride,
                                     kernel_regularizer=tf_contrib.layers.l2_regularizer(scale=0.0001))
            else :
                x = tf.layers.conv2d(inputs=x, filters=channels, kernel_size=kernel, strides=stride,
                                     kernel_regularizer=tf_contrib.layers.l2_regularizer(scale=0.0001))


        x = activation(x, activation_fn)

        return x 
開發者ID:taki0112,項目名稱:UNIT-Tensorflow,代碼行數:22,代碼來源:ops.py

示例3: deconv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def deconv(x, channels, kernel=3, stride=2, normal_weight_init=False, activation_fn='leaky', scope='deconv_0') :
    with tf.variable_scope(scope):
        if normal_weight_init:
            x = tf.layers.conv2d_transpose(inputs=x, filters=channels, kernel_size=kernel,
                                 kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
                                 strides=stride, padding='SAME', kernel_regularizer=tf_contrib.layers.l2_regularizer(scale=0.0001))

        else:
            if activation_fn == 'relu' :
                x = tf.layers.conv2d_transpose(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=he_init(), strides=stride, padding='SAME',
                                               kernel_regularizer=tf_contrib.layers.l2_regularizer(scale=0.0001))
            else :
                x = tf.layers.conv2d_transpose(inputs=x, filters=channels, kernel_size=kernel, strides=stride, padding='SAME',
                                               kernel_regularizer=tf_contrib.layers.l2_regularizer(scale=0.0001))

        x = activation(x, activation_fn)

        return x 
開發者ID:taki0112,項目名稱:UNIT-Tensorflow,代碼行數:20,代碼來源:ops.py

示例4: densenet_backbone

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def densenet_backbone(image, qw=1):
    with argscope(Conv2DQuant, nl=tf.identity, use_bias=False,
                  W_init=variance_scaling_initializer(mode='FAN_IN'),
                  data_format=get_arg_scope()['Conv2D']['data_format'],
                  nbit=qw,
                  is_quant=True if qw > 0 else False):
        logits = (LinearWrap(image)
                  .Conv2DQuant('conv1', 2 * GROWTH_RATE, 7, stride=2, nl=BNReLU, is_quant=False)
                  .MaxPooling('pool1', shape=3, stride=2, padding='SAME')
                  # 56
                  .apply(add_dense_block, 'block0', 6)
                  # 28
                  .apply(add_dense_block, 'block1', 12)
                  # 14
                  .apply(add_dense_block, 'block2', 24)
                  # 7
                  .apply(add_dense_block, 'block3', 16, last=True)
                  .BNReLU('bnrelu_last')
                  .GlobalAvgPooling('gap')
                  .FullyConnected('linear', out_dim=1000, nl=tf.identity, W_init=variance_scaling_initializer(mode='FAN_IN'))())
    return logits 
開發者ID:microsoft,項目名稱:LQ-Nets,代碼行數:23,代碼來源:densenet_model.py

示例5: resnet_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def resnet_arg_scope(
        weight_decay=0.0001,
        batch_norm_decay=0.997,
        batch_norm_epsilon=1e-5,
        batch_norm_scale=True,
):
    batch_norm_params = {
        'decay': batch_norm_decay,
        'epsilon': batch_norm_epsilon,
        'scale': batch_norm_scale,
    }
    l2_regularizer = layers.l2_regularizer(weight_decay)

    arg_scope_layers = arg_scope(
        [layers.conv2d, my_layers.preact_conv2d, layers.fully_connected],
        weights_initializer=layers.variance_scaling_initializer(),
        weights_regularizer=l2_regularizer,
        activation_fn=tf.nn.relu)
    arg_scope_conv = arg_scope(
        [layers.conv2d, my_layers.preact_conv2d],
        normalizer_fn=layers.batch_norm,
        normalizer_params=batch_norm_params)
    with arg_scope_layers, arg_scope_conv as arg_sc:
        return arg_sc 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:26,代碼來源:build_resnet.py

示例6: get_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def get_arg_scope(is_training):
        weight_decay_l2 = 0.1
        batch_norm_decay = 0.999
        batch_norm_epsilon = 0.0001

        with slim.arg_scope([slim.conv2d, slim.fully_connected, layers.separable_convolution2d],
                            weights_regularizer = slim.l2_regularizer(weight_decay_l2),
                            biases_regularizer = slim.l2_regularizer(weight_decay_l2),
                            weights_initializer = layers.variance_scaling_initializer(),
                            ):
            batch_norm_params = {
                'decay': batch_norm_decay,
                'epsilon': batch_norm_epsilon
            }
            with slim.arg_scope([slim.batch_norm, slim.dropout],
                                is_training = is_training):
                with slim.arg_scope([slim.batch_norm],
                                    **batch_norm_params):
                    with slim.arg_scope([slim.conv2d, layers.separable_convolution2d, layers.fully_connected],
                                        activation_fn = tf.nn.elu,
                                        normalizer_fn = slim.batch_norm,
                                        normalizer_params = batch_norm_params) as scope:
                        return scope 
開發者ID:marian-margeta,項目名稱:gait-recognition,代碼行數:25,代碼來源:gait_nn.py

示例7: create_continuous_observation_encoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def create_continuous_observation_encoder(observation_input, h_size, activation, num_layers, scope, reuse):
        """
        Builds a set of hidden state encoders.
        :param reuse: Whether to re-use the weights within the same scope.
        :param scope: Graph scope for the encoder ops.
        :param observation_input: Input vector.
        :param h_size: Hidden layer size.
        :param activation: What type of activation function to use for layers.
        :param num_layers: number of hidden layers to create.
        :return: List of hidden layer tensors.
        """
        with tf.variable_scope(scope):
            hidden = observation_input
            for i in range(num_layers):
                hidden = tf.layers.dense(hidden, h_size, activation=activation, reuse=reuse, name="hidden_{}".format(i),
                                         kernel_initializer=c_layers.variance_scaling_initializer(1.0))
        return hidden 
開發者ID:xkiwilabs,項目名稱:DQN-using-PyTorch-and-ML-Agents,代碼行數:19,代碼來源:models.py

示例8: nas_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def nas_arg_scope(weight_decay=4e-5,
                  batch_norm_decay=0.9997,
                  batch_norm_epsilon=0.001,
                  sync_batch_norm_method='None'):
  """Default arg scope for the NAS models."""
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': batch_norm_decay,
      # epsilon to prevent 0s in variance.
      'epsilon': batch_norm_epsilon,
      'scale': True,
  }
  batch_norm = utils.get_batch_norm_fn(sync_batch_norm_method)
  weights_regularizer = contrib_layers.l2_regularizer(weight_decay)
  weights_initializer = contrib_layers.variance_scaling_initializer(
      factor=1 / 3.0, mode='FAN_IN', uniform=True)
  with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d],
                 weights_regularizer=weights_regularizer,
                 weights_initializer=weights_initializer):
    with arg_scope([slim.fully_connected],
                   activation_fn=None, scope='FC'):
      with arg_scope([slim.conv2d, slim.separable_conv2d],
                     activation_fn=None, biases_initializer=None):
        with arg_scope([batch_norm], **batch_norm_params) as sc:
          return sc 
開發者ID:tensorflow,項目名稱:models,代碼行數:27,代碼來源:nas_network.py

示例9: nasnet_cifar_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def nasnet_cifar_arg_scope(weight_decay=5e-4,
                           batch_norm_decay=0.9,
                           batch_norm_epsilon=1e-5):
  """Defines the default arg scope for the NASNet-A Cifar model.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: Decay for batch norm moving average.
    batch_norm_epsilon: Small float added to variance to avoid dividing by zero
      in batch norm.
  Returns:
    An `arg_scope` to use for the NASNet Cifar Model.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': batch_norm_decay,
      # epsilon to prevent 0s in variance.
      'epsilon': batch_norm_epsilon,
      'scale': True,
      'fused': True,
  }
  weights_regularizer = contrib_layers.l2_regularizer(weight_decay)
  weights_initializer = contrib_layers.variance_scaling_initializer(
      mode='FAN_OUT')
  with arg_scope(
      [slim.fully_connected, slim.conv2d, slim.separable_conv2d],
      weights_regularizer=weights_regularizer,
      weights_initializer=weights_initializer):
    with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'):
      with arg_scope(
          [slim.conv2d, slim.separable_conv2d],
          activation_fn=None,
          biases_initializer=None):
        with arg_scope([slim.batch_norm], **batch_norm_params) as sc:
          return sc 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:37,代碼來源:nasnet_model.py

示例10: nasnet_mobile_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def nasnet_mobile_arg_scope(weight_decay=4e-5,
                            batch_norm_decay=0.9997,
                            batch_norm_epsilon=1e-3):
  """Defines the default arg scope for the NASNet-A Mobile ImageNet model.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: Decay for batch norm moving average.
    batch_norm_epsilon: Small float added to variance to avoid dividing by zero
      in batch norm.
  Returns:
    An `arg_scope` to use for the NASNet Mobile Model.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': batch_norm_decay,
      # epsilon to prevent 0s in variance.
      'epsilon': batch_norm_epsilon,
      'scale': True,
      'fused': True,
  }
  weights_regularizer = contrib_layers.l2_regularizer(weight_decay)
  weights_initializer = contrib_layers.variance_scaling_initializer(
      mode='FAN_OUT')
  with arg_scope(
      [slim.fully_connected, slim.conv2d, slim.separable_conv2d],
      weights_regularizer=weights_regularizer,
      weights_initializer=weights_initializer):
    with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'):
      with arg_scope(
          [slim.conv2d, slim.separable_conv2d],
          activation_fn=None,
          biases_initializer=None):
        with arg_scope([slim.batch_norm], **batch_norm_params) as sc:
          return sc 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:37,代碼來源:nasnet_model.py

示例11: nasnet_large_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def nasnet_large_arg_scope(weight_decay=5e-5,
                           batch_norm_decay=0.9997,
                           batch_norm_epsilon=1e-3):
  """Defines the default arg scope for the NASNet-A Large ImageNet model.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: Decay for batch norm moving average.
    batch_norm_epsilon: Small float added to variance to avoid dividing by zero
      in batch norm.
  Returns:
    An `arg_scope` to use for the NASNet Large Model.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': batch_norm_decay,
      # epsilon to prevent 0s in variance.
      'epsilon': batch_norm_epsilon,
      'scale': True,
      'fused': True,
  }
  weights_regularizer = contrib_layers.l2_regularizer(weight_decay)
  weights_initializer = contrib_layers.variance_scaling_initializer(
      mode='FAN_OUT')
  with arg_scope(
      [slim.fully_connected, slim.conv2d, slim.separable_conv2d],
      weights_regularizer=weights_regularizer,
      weights_initializer=weights_initializer):
    with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'):
      with arg_scope(
          [slim.conv2d, slim.separable_conv2d],
          activation_fn=None,
          biases_initializer=None):
        with arg_scope([slim.batch_norm], **batch_norm_params) as sc:
          return sc 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:37,代碼來源:nasnet_model.py

示例12: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def __init__(self, brain, h_size=128, lr=1e-4, n_layers=2, m_size=128,
                 normalize=False, use_recurrent=False):
        LearningModel.__init__(self, m_size, normalize, use_recurrent, brain)

        num_streams = 1
        hidden_streams = self.create_new_obs(num_streams, h_size, n_layers)
        hidden = hidden_streams[0]
        self.dropout_rate = tf.placeholder(dtype=tf.float32, shape=[], name="dropout_rate")
        hidden_reg = tf.layers.dropout(hidden, self.dropout_rate)
        if self.use_recurrent:
            self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
            hidden_reg, self.memory_out = self.create_recurrent_encoder(hidden_reg, self.memory_in)
            self.memory_out = tf.identity(self.memory_out, name='recurrent_out')
        self.policy = tf.layers.dense(hidden_reg, self.a_size, activation=None, use_bias=False,
                                      kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))

        if brain.vector_action_space_type == "discrete":
            self.action_probs = tf.nn.softmax(self.policy)
            self.sample_action_float = tf.multinomial(self.policy, 1)
            self.sample_action_float = tf.identity(self.sample_action_float, name="action")
            self.sample_action = tf.cast(self.sample_action_float, tf.int32)
            self.true_action = tf.placeholder(shape=[None], dtype=tf.int32, name="teacher_action")
            self.action_oh = tf.one_hot(self.true_action, self.a_size)
            self.loss = tf.reduce_sum(-tf.log(self.action_probs + 1e-10) * self.action_oh)
            self.action_percent = tf.reduce_mean(tf.cast(
                tf.equal(tf.cast(tf.argmax(self.action_probs, axis=1), tf.int32), self.sample_action), tf.float32))
        else:
            self.sample_action = tf.identity(self.policy, name="action")
            self.true_action = tf.placeholder(shape=[None, self.a_size], dtype=tf.float32, name="teacher_action")
            self.loss = tf.reduce_sum(tf.squared_difference(self.true_action, self.sample_action))

        optimizer = tf.train.AdamOptimizer(learning_rate=lr)
        self.update = optimizer.minimize(self.loss) 
開發者ID:ArztSamuel,項目名稱:DRL_DeliveryDuel,代碼行數:35,代碼來源:models.py

示例13: create_continuous_state_encoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def create_continuous_state_encoder(self, h_size, activation, num_layers):
        """
        Builds a set of hidden state encoders.
        :param h_size: Hidden layer size.
        :param activation: What type of activation function to use for layers.
        :param num_layers: number of hidden layers to create.
        :return: List of hidden layer tensors.
        """
        hidden = self.normalized_state
        for j in range(num_layers):
            hidden = tf.layers.dense(hidden, h_size, activation=activation,
                                     kernel_initializer=c_layers.variance_scaling_initializer(1.0))
        return hidden 
開發者ID:ArztSamuel,項目名稱:DRL_DeliveryDuel,代碼行數:15,代碼來源:models.py

示例14: create_dc_actor_critic

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def create_dc_actor_critic(self, h_size, num_layers):
        num_streams = 1
        hidden_streams = self.create_new_obs(num_streams, h_size, num_layers)
        hidden = hidden_streams[0]

        if self.use_recurrent:
            tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
            self.prev_action = tf.placeholder(shape=[None], dtype=tf.int32, name='prev_action')
            self.prev_action_oh = c_layers.one_hot_encoding(self.prev_action, self.a_size)
            hidden = tf.concat([hidden, self.prev_action_oh], axis=1)

            self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
            hidden, self.memory_out = self.create_recurrent_encoder(hidden, self.memory_in)
            self.memory_out = tf.identity(self.memory_out, name='recurrent_out')

        self.policy = tf.layers.dense(hidden, self.a_size, activation=None, use_bias=False,
                                      kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))

        self.all_probs = tf.nn.softmax(self.policy, name="action_probs")
        self.output = tf.multinomial(self.policy, 1)
        self.output = tf.identity(self.output, name="action")

        self.value = tf.layers.dense(hidden, 1, activation=None)
        self.value = tf.identity(self.value, name="value_estimate")
        self.entropy = -tf.reduce_sum(self.all_probs * tf.log(self.all_probs + 1e-10), axis=1)
        self.action_holder = tf.placeholder(shape=[None], dtype=tf.int32)
        self.selected_actions = c_layers.one_hot_encoding(self.action_holder, self.a_size)

        self.all_old_probs = tf.placeholder(shape=[None, self.a_size], dtype=tf.float32, name='old_probabilities')

        # We reshape these tensors to [batch x 1] in order to be of the same rank as continuous control probabilities.
        self.probs = tf.expand_dims(tf.reduce_sum(self.all_probs * self.selected_actions, axis=1), 1)
        self.old_probs = tf.expand_dims(tf.reduce_sum(self.all_old_probs * self.selected_actions, axis=1), 1) 
開發者ID:ArztSamuel,項目名稱:DRL_DeliveryDuel,代碼行數:35,代碼來源:models.py

示例15: create_cc_actor_critic

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import variance_scaling_initializer [as 別名]
def create_cc_actor_critic(self, h_size, num_layers):
        num_streams = 2
        hidden_streams = self.create_new_obs(num_streams, h_size, num_layers)

        if self.use_recurrent:
            tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32)
            self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in')
            _half_point = int(self.m_size / 2)
            hidden_policy, memory_policy_out = self.create_recurrent_encoder(
                hidden_streams[0], self.memory_in[:, :_half_point], name='lstm_policy')

            hidden_value, memory_value_out = self.create_recurrent_encoder(
                hidden_streams[1], self.memory_in[:, _half_point:], name='lstm_value')
            self.memory_out = tf.concat([memory_policy_out, memory_value_out], axis=1, name='recurrent_out')
        else:
            hidden_policy = hidden_streams[0]
            hidden_value = hidden_streams[1]

        self.mu = tf.layers.dense(hidden_policy, self.a_size, activation=None, use_bias=False,
                                  kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))

        self.log_sigma_sq = tf.get_variable("log_sigma_squared", [self.a_size], dtype=tf.float32,
                                            initializer=tf.zeros_initializer())

        self.sigma_sq = tf.exp(self.log_sigma_sq)
        self.epsilon = tf.random_normal(tf.shape(self.mu), dtype=tf.float32)
        self.output = self.mu + tf.sqrt(self.sigma_sq) * self.epsilon
        self.output = tf.identity(self.output, name='action')
        a = tf.exp(-1 * tf.pow(tf.stop_gradient(self.output) - self.mu, 2) / (2 * self.sigma_sq))
        b = 1 / tf.sqrt(2 * self.sigma_sq * np.pi)
        self.all_probs = tf.multiply(a, b, name="action_probs")
        self.entropy = tf.reduce_mean(0.5 * tf.log(2 * np.pi * np.e * self.sigma_sq))
        self.value = tf.layers.dense(hidden_value, 1, activation=None)
        self.value = tf.identity(self.value, name="value_estimate")
        self.all_old_probs = tf.placeholder(shape=[None, self.a_size], dtype=tf.float32,
                                            name='old_probabilities')
        # We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
        self.probs = tf.identity(self.all_probs)
        self.old_probs = tf.identity(self.all_old_probs) 
開發者ID:ArztSamuel,項目名稱:DRL_DeliveryDuel,代碼行數:41,代碼來源:models.py


注:本文中的tensorflow.contrib.layers.variance_scaling_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。