當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.repeat方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.python.layers.layers.repeat方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.repeat方法的具體用法?Python layers.repeat怎麽用?Python layers.repeat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers.python.layers.layers的用法示例。


在下文中一共展示了layers.repeat方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: vgg_a

# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import repeat [as 別名]
def vgg_a(inputs,
          num_classes=1000,
          is_training=True,
          dropout_keep_prob=0.5,
          spatial_squeeze=True,
          scope='vgg_a'):
  """Oxford Net VGG 11-Layers version A Example.

  Note: All the fully_connected layers have been transformed to conv2d layers.
        To use in classification mode, resize input to 224x224.

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    num_classes: number of predicted classes.
    is_training: whether or not the model is being trained.
    dropout_keep_prob: the probability that activations are kept in the dropout
      layers during training.
    spatial_squeeze: whether or not should squeeze the spatial dimensions of the
      outputs. Useful to remove unnecessary dimensions for classification.
    scope: Optional scope for the variables.

  Returns:
    the last op containing the log predictions and end_points dict.
  """
  with variable_scope.variable_scope(scope, 'vgg_a', [inputs]) as sc:
    end_points_collection = sc.original_name_scope + '_end_points'
    # Collect outputs for conv2d, fully_connected and max_pool2d.
    with arg_scope(
        [layers.conv2d, layers_lib.max_pool2d],
        outputs_collections=end_points_collection):
      net = layers_lib.repeat(
          inputs, 1, layers.conv2d, 64, [3, 3], scope='conv1')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
      net = layers_lib.repeat(net, 1, layers.conv2d, 128, [3, 3], scope='conv2')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
      net = layers_lib.repeat(net, 2, layers.conv2d, 256, [3, 3], scope='conv3')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool3')
      net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv4')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool4')
      net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv5')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
      # Use conv2d instead of fully_connected layers.
      net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6')
      net = layers_lib.dropout(
          net, dropout_keep_prob, is_training=is_training, scope='dropout6')
      net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
      net = layers_lib.dropout(
          net, dropout_keep_prob, is_training=is_training, scope='dropout7')
      net = layers.conv2d(
          net,
          num_classes, [1, 1],
          activation_fn=None,
          normalizer_fn=None,
          scope='fc8')
      # Convert end_points_collection into a end_point dict.
      end_points = utils.convert_collection_to_dict(end_points_collection)
      if spatial_squeeze:
        net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
        end_points[sc.name + '/fc8'] = net
      return net, end_points 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:62,代碼來源:vgg16.py

示例2: vgg_19

# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import repeat [as 別名]
def vgg_19(inputs,
           num_classes=1000,
           is_training=True,
           dropout_keep_prob=0.5,
           spatial_squeeze=True,
           scope='vgg_19'):
  """Oxford Net VGG 19-Layers version E Example.

  Note: All the fully_connected layers have been transformed to conv2d layers.
        To use in classification mode, resize input to 224x224.

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    num_classes: number of predicted classes.
    is_training: whether or not the model is being trained.
    dropout_keep_prob: the probability that activations are kept in the dropout
      layers during training.
    spatial_squeeze: whether or not should squeeze the spatial dimensions of the
      outputs. Useful to remove unnecessary dimensions for classification.
    scope: Optional scope for the variables.

  Returns:
    the last op containing the log predictions and end_points dict.
  """
  with variable_scope.variable_scope(scope, 'vgg_19', [inputs]) as sc:
    end_points_collection = sc.name + '_end_points'
    # Collect outputs for conv2d, fully_connected and max_pool2d.
    with arg_scope(
        [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d],
        outputs_collections=end_points_collection):
      net = layers_lib.repeat(
          inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
      net = layers_lib.repeat(net, 2, layers.conv2d, 128, [3, 3], scope='conv2')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
      net = layers_lib.repeat(net, 4, layers.conv2d, 256, [3, 3], scope='conv3')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool3')
      net = layers_lib.repeat(net, 4, layers.conv2d, 512, [3, 3], scope='conv4')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool4')
      net = layers_lib.repeat(net, 4, layers.conv2d, 512, [3, 3], scope='conv5')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
      # Use conv2d instead of fully_connected layers.
      net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6')
      net = layers_lib.dropout(
          net, dropout_keep_prob, is_training=is_training, scope='dropout6')
      net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
      net = layers_lib.dropout(
          net, dropout_keep_prob, is_training=is_training, scope='dropout7')
      net = layers.conv2d(
          net,
          num_classes, [1, 1],
          activation_fn=None,
          normalizer_fn=None,
          scope='fc8')
      # Convert end_points_collection into a end_point dict.
      end_points = utils.convert_collection_to_dict(end_points_collection)
      if spatial_squeeze:
        net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
        end_points[sc.name + '/fc8'] = net
      return net, end_points 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:62,代碼來源:vgg16.py

示例3: vgg_16

# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import repeat [as 別名]
def vgg_16(inputs,
           num_classes=1000,
           is_training=True,
           dropout_keep_prob=0.5,
           spatial_squeeze=True,
           scope='vgg_16'):
  """Oxford Net VGG 16-Layers version D Example.

  Note: All the fully_connected layers have been transformed to conv2d layers.
        To use in classification mode, resize input to 224x224.

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    num_classes: number of predicted classes.
    is_training: whether or not the model is being trained.
    dropout_keep_prob: the probability that activations are kept in the dropout
      layers during training.
    spatial_squeeze: whether or not should squeeze the spatial dimensions of the
      outputs. Useful to remove unnecessary dimensions for classification.
    scope: Optional scope for the variables.

  Returns:
    the last op containing the log predictions and end_points dict.
  """
  with variable_scope.variable_scope(scope, 'vgg_16', [inputs]) as sc:
    end_points_collection = sc.original_name_scope + '_end_points'
    # Collect outputs for conv2d, fully_connected and max_pool2d.
    with arg_scope(
        [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d],
        outputs_collections=end_points_collection):
      net = layers_lib.repeat(
          inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
      net = layers_lib.repeat(net, 2, layers.conv2d, 128, [3, 3], scope='conv2')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
      net = layers_lib.repeat(net, 3, layers.conv2d, 256, [3, 3], scope='conv3')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool3')
      net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv4')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool4')
      net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv5')
      net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
      # Use conv2d instead of fully_connected layers.
      net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6')
      net = layers_lib.dropout(
          net, dropout_keep_prob, is_training=is_training, scope='dropout6')
      net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
      net = layers_lib.dropout(
          net, dropout_keep_prob, is_training=is_training, scope='dropout7')
      net = layers.conv2d(
          net,
          num_classes, [1, 1],
          activation_fn=None,
          normalizer_fn=None,
          scope='fc8')
      # Convert end_points_collection into a end_point dict.
      end_points = utils.convert_collection_to_dict(end_points_collection)
      if spatial_squeeze:
        net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
        end_points[sc.name + '/fc8'] = net
      return net, end_points 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:62,代碼來源:vgg.py

示例4: truncated_vgg_16

# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import repeat [as 別名]
def truncated_vgg_16(inputs, is_training=True, scope='vgg_16'):
    """Oxford Net VGG 16-Layers version D Example.

    For use in SSD object detection network, which has this particular
    truncated version of VGG16 detailed in its paper.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      scope: Optional scope for the variables.

    Returns:
      the last op containing the conv5 tensor and end_points dict.
    """
    with variable_scope.variable_scope(scope, 'vgg_16', [inputs]) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with arg_scope(
            [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d],
            outputs_collections=end_points_collection
        ):
            net = layers_lib.repeat(
                inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
            net = layers_lib.repeat(
                net, 2, layers.conv2d, 128, [3, 3], scope='conv2'
            )
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
            net = layers_lib.repeat(
                net, 3, layers.conv2d, 256, [3, 3], scope='conv3'
            )
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool3')
            net = layers_lib.repeat(
                net, 3, layers.conv2d, 512, [3, 3], scope='conv4'
            )
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool4')
            net = layers_lib.repeat(
                net, 3, layers.conv2d, 512, [3, 3], scope='conv5'
            )
            # Convert end_points_collection into a end_point dict.
            end_points = utils.convert_collection_to_dict(
                end_points_collection
            )
            return net, end_points 
開發者ID:Sargunan,項目名稱:Table-Detection-using-Deep-learning,代碼行數:45,代碼來源:truncated_vgg.py


注:本文中的tensorflow.contrib.layers.python.layers.layers.repeat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。