本文整理匯總了Python中tensorflow.contrib.layers.python.layers.layers.conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.conv2d方法的具體用法?Python layers.conv2d怎麽用?Python layers.conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.layers.python.layers.layers
的用法示例。
在下文中一共展示了layers.conv2d方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: network_arg_scope
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def network_arg_scope(is_training=True,
weight_decay=cfg.train.weight_decay,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': is_training, 'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale,
'updates_collections': ops.GraphKeys.UPDATE_OPS,
#'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
'trainable': cfg.train.bn_training,
}
with slim.arg_scope(
[slim.conv2d, slim.separable_convolution2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu6,
#activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
padding='SAME'):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例2: dense_block
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def dense_block(inputs, depth, depth_bottleneck, stride, name, rate=1):
depth_in = inputs.get_shape()[3]
if depth == depth_in:
if stride == 1:
shortcut = inputs
else:
shortcut = layers.max_pool2d(inputs, [1, 1], stride=factor, scope=name+'_shortcut')
else:
shortcut = layers.conv2d(
inputs,
depth, [1, 1],
stride=stride,
activation_fn=None,
scope=name+'_shortcut')
if PRINT_LAYER_LOG:
print(name+'_shortcut', shortcut.get_shape())
residual = layers.conv2d(
inputs, depth_bottleneck, [1, 1], stride=1, scope=name+'_conv1')
if PRINT_LAYER_LOG:
print(name+'_conv1', residual.get_shape())
residual = resnet_utils.conv2d_same(
residual, depth_bottleneck, 3, stride, rate=rate, scope=name+'_conv2')
if PRINT_LAYER_LOG:
print(name+'_conv2', residual.get_shape())
residual = layers.conv2d(
residual, depth, [1, 1], stride=1, activation_fn=None, scope=name+'_conv3')
if PRINT_LAYER_LOG:
print(name+'_conv3', residual.get_shape())
output = nn_ops.relu(shortcut + residual)
return output
示例3: conv2d
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def conv2d(inputs, c_outputs, s, name):
output = slim.conv2d(inputs, num_outputs=c_outputs, kernel_size=[3,3], stride=s, scope=name)
if PRINT_LAYER_LOG:
print(name, output.get_shape())
return output
示例4: resnet_v1_backbone
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def resnet_v1_backbone(inputs,
blocks,
is_training=True,
output_stride=None,
include_root_block=True,
reuse=None,
scope=None):
with variable_scope.variable_scope(
scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
end_points_collection = sc.original_name_scope + '_end_points'
with arg_scope(
[layers.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
outputs_collections=end_points_collection):
with arg_scope([layers.batch_norm], is_training=is_training):
net = inputs
if include_root_block:
if output_stride is not None:
if output_stride % 4 != 0:
raise ValueError('The output_stride needs to be a multiple of 4.')
output_stride /= 4
net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope='pool1')
net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
# Convert end_points_collection into a dictionary of end_points.
end_points = utils.convert_collection_to_dict(end_points_collection)
return net, end_points
示例5: inference
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def inference(self, mode, inputs, scope='SenseCls'):
is_training = mode
with slim.arg_scope(network_arg_scope(is_training=is_training)):
with tf.variable_scope(scope, reuse=False):
conv0 = slim.conv2d(inputs,
num_outputs=64,
kernel_size=[7,7],
stride=2,
scope='conv0')
if PRINT_LAYER_LOG:
print(conv0.name, conv0.get_shape())
pool0 = slim.max_pool2d(conv0, kernel_size=[3, 3], stride=2, scope='pool0')
if PRINT_LAYER_LOG:
print('pool0', pool0.get_shape())
block0_0 = block(pool0, 64, 1, 'block0_0')
block0_1 = block(block0_0, 64, 1, 'block0_1')
block0_2 = block(block0_1, 64, 1, 'block0_2')
block1_0 = block(block0_2, 128, 2, 'block1_0')
block1_1 = block(block1_0, 128, 1, 'block1_1')
block1_2 = block(block1_1, 128, 1, 'block1_2')
block1_3 = block(block1_2, 128, 1, 'block1_3')
block2_0 = block(block1_3, 256, 2, 'block2_0')
block2_1 = block(block2_0, 256, 1, 'block2_1')
block2_2 = block(block2_1, 256, 1, 'block2_2')
block2_3 = block(block2_2, 256, 1, 'block2_3')
block2_4 = block(block2_3, 256, 1, 'block2_4')
block2_5 = block(block2_4, 256, 1, 'block2_5')
block3_0 = block(block2_5, 512, 2, 'block3_0')
block3_1 = block(block3_0, 512, 1, 'block3_1')
block3_2 = block(block3_1, 512, 1, 'block3_2')
net = tf.reduce_mean(block3_2, [1, 2], keepdims=True, name='global_pool_v4')
if PRINT_LAYER_LOG:
print('avg_pool', net.get_shape())
net = slim.flatten(net, scope='PreLogitsFlatten')
net = slim.dropout(net, 0.8, is_training=is_training, scope='dropout')
logits = fully_connected(net, cfg.classes, name='fc')
if PRINT_LAYER_LOG:
print('logits', logits.get_shape())
if is_training:
l2_loss = tf.add_n(tf.losses.get_regularization_losses())
return logits, l2_loss
else:
return logits
示例6: block
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def block(inputs, c_outputs, s, name):
se_module = True
out1 = slim.conv2d(inputs,
num_outputs=c_outputs,
kernel_size=[3,3],
stride=s,
scope=name+'_0')
if PRINT_LAYER_LOG:
print(name+'_0', out1.get_shape())
output = slim.conv2d(out1,
num_outputs=c_outputs,
kernel_size=[3,3],
stride=1,
activation_fn=None,
scope=name+'_1')
if PRINT_LAYER_LOG:
print(name+'_1', output.get_shape())
if s == 2:
return nn_ops.relu(output)
else:
if se_module:
squeeze = tf.reduce_mean(output, [1, 2], keepdims=True, name='global_pool_v4')
if PRINT_LAYER_LOG:
print('squeeze', squeeze.get_shape())
fc1 = slim.conv2d(squeeze,
num_outputs=squeeze.get_shape()[-1] // 16,
normalizer_fn=None,
normalizer_params=None,
weights_regularizer=None,
kernel_size=[1,1],
stride=1,
activation_fn=tf.nn.relu,
scope=name+'_fc1')
if PRINT_LAYER_LOG:
print('fc1', fc1.get_shape())
fc2 = slim.conv2d(fc1,
num_outputs=squeeze.get_shape()[-1],
normalizer_fn=None,
normalizer_params=None,
weights_regularizer=None,
kernel_size=[1,1],
stride=1,
activation_fn=tf.sigmoid,
scope=name+'_fc2')
if PRINT_LAYER_LOG:
print('fc2', fc2.get_shape())
output = output * fc2
output = nn_ops.relu(inputs + output)
if PRINT_LAYER_LOG:
print(name, output.get_shape())
return output
示例7: conv2d_same
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None):
"""Strided 2-D convolution with 'SAME' padding.
When stride > 1, then we do explicit zero-padding, followed by conv2d with
'VALID' padding.
Note that
net = conv2d_same(inputs, num_outputs, 3, stride=stride)
is equivalent to
net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=1,
padding='SAME')
net = subsample(net, factor=stride)
whereas
net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=stride,
padding='SAME')
is different when the input's height or width is even, which is why we add the
current function. For more details, see ResnetUtilsTest.testConv2DSameEven().
Args:
inputs: A 4-D tensor of size [batch, height_in, width_in, channels].
num_outputs: An integer, the number of output filters.
kernel_size: An int with the kernel_size of the filters.
stride: An integer, the output stride.
rate: An integer, rate for atrous convolution.
scope: Scope.
Returns:
output: A 4-D tensor of size [batch, height_out, width_out, channels] with
the convolution output.
"""
if stride == 1:
return layers_lib.conv2d(
inputs,
num_outputs,
kernel_size,
stride=1,
rate=rate,
padding='SAME',
scope=scope)
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
inputs = array_ops.pad(
inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
return layers_lib.conv2d(
inputs,
num_outputs,
kernel_size,
stride=stride,
rate=rate,
padding='VALID',
scope=scope)
示例8: bottleneck
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import conv2d [as 別名]
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
rate=1,
outputs_collections=None,
scope=None):
"""Bottleneck residual unit variant with BN after convolutions.
This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
its definition. Note that we use here the bottleneck variant which has an
extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with variable_scope.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = layers.conv2d(
inputs,
depth, [1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = layers.conv2d(
inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = resnet_utils.conv2d_same(
residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
residual = layers.conv2d(
residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3')
output = nn_ops.relu(shortcut + residual)
return utils.collect_named_outputs(outputs_collections, sc.name, output)