本文整理匯總了Python中tensorflow.contrib.layers.python.layers.layers.batch_norm方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.batch_norm方法的具體用法?Python layers.batch_norm怎麽用?Python layers.batch_norm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.layers.python.layers.layers
的用法示例。
在下文中一共展示了layers.batch_norm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: resnet_arg_scope
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例2: inception_arg_scope
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def inception_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例3: predictron_arg_scope
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def predictron_arg_scope(weight_decay=0.0001,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=None,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
示例4: _fully_connected
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def _fully_connected(input_data, num_output, name, relu=True):
with tf.variable_scope(name) as scope:
input_shape = input_data.get_shape()
if input_shape.ndims == 5:
dim = 1
for d in input_shape[1:].as_list():
dim *= d
feed_in = tf.reshape(input_data, [-1, dim])
else:
feed_in, dim = (input_data, input_shape[-1].value)
weights = tf.get_variable(name="weights", shape=[dim, num_output],
regularizer=tf.contrib.layers.l2_regularizer(scale=0.0001),
initializer=tf.truncated_normal_initializer(stddev=1e-1, dtype=tf.float32))
#initializer=tf.contrib.layers.xavier_initializer(uniform=True))
biases = tf.get_variable(name="biases", shape=[num_output], dtype=tf.float32,
initializer=tf.constant_initializer(value=0.0))
op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b
output = op(feed_in, weights, biases, name=scope.name)
return batch_norm(output)
示例5: conv2d
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def conv2d(
inputs, filters, bias=None,
strides=list([1, 1, 1, 1]), padding='SAME', dilations=list([1, 1, 1, 1]),
to_batch_norm=False, batch_norm_decay=0.997, is_training=True, activation_fn=None, name=None
):
output = tf.nn.conv2d(
input=inputs,
filter=filters,
strides=strides,
padding=padding,
dilations=dilations,
name=name
)
if bias is not None:
output = tf.nn.bias_add(output, bias)
if to_batch_norm:
output = batch_norm(output, is_training, batch_norm_decay)
if activation_fn is not None:
output = activation_fn(output)
return output
示例6: multi_conv2d
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def multi_conv2d(inputs, filters: tf.Tensor, bias=None, stride=list([1, 1, 1, 1]),
padding='SAME', basis_rate=list([1, 3, 5]), to_batch_norm=False, batch_norm_decay=0.997,
is_training=True, activation_fn=None):
_number_of_basis = len(basis_rate)
if _number_of_basis < 2:
raise ValueError('Number of basis_rate must be larger or equal than 2')
output = conv2d(inputs, filters, bias, stride, padding)
for idx, r in enumerate(basis_rate):
output += atrous_conv2d(inputs, filters, r, bias, padding, stride)
output /= _number_of_basis
if to_batch_norm:
output = batch_norm(output, is_training, batch_norm_decay)
if activation_fn is not None:
output = activation_fn(output)
return output
示例7: scale_conv2d
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def scale_conv2d(inputs, filters: tf.Tensor, bias=None, stride=list([1, 1, 1, 1]), padding='SAME',
initial_step=1, number_of_step=5, step_multiplier=1.25,
to_batch_norm=False, batch_norm_decay=0.997, is_training=True, activation_fn=None):
_step = initial_step
output = bilinear_conv2d(inputs, filters, _step, bias, padding, stride)
for i in range(1, number_of_step):
_step *= step_multiplier
output += bilinear_conv2d(inputs, filters, _step, bias, padding, stride)
output /= number_of_step
if to_batch_norm:
output = batch_norm(output, is_training, batch_norm_decay)
if activation_fn is not None:
output = activation_fn(output)
return output
示例8: inception_v2_arg_scope
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def inception_v2_arg_scope(weight_decay=0.00004,
batch_norm_var_collection='moving_vars'):
"""Defines the default InceptionV2 arg scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.9997,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# collection containing update_ops.
'updates_collections': ops.GraphKeys.UPDATE_OPS,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:41,代碼來源:inception_v2.py
示例9: BatchNormClassifier
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def BatchNormClassifier(inputs):
inputs = layers.batch_norm(inputs, decay=0.1)
return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
示例10: inception
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def inception():
image = tf.placeholder(tf.float32, [None, 224, 224, 3], 'image')
with slim.arg_scope(inception_arg_scope(is_training=False)):
with variable_scope.variable_scope(
'InceptionV1', 'InceptionV1', [image, 1000], reuse=None) as scope:
with arg_scope(
[layers_lib.batch_norm, layers_lib.dropout], is_training=False):
net, end_points = inception_v1_base(image, scope=scope)
with variable_scope.variable_scope('Logits'):
net_conv = layers_lib.avg_pool2d(
net, [7, 7], stride=1, scope='MaxPool_0a_7x7')
print(net_conv.shape)
return net_conv, image
示例11: forward_train
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def forward_train(self, train_input):
batch_norm_params = {'epsilon': 1e-5,
'scale': True,
'is_training': True,
'updates_collections': ops.GraphKeys.UPDATE_OPS}
with slim.arg_scope([layers.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.conv2d],
weights_initializer=he_normal_fanout(),
weights_regularizer=slim.l2_regularizer(self.cfg['NET']['weight_l2_scale'])):
final_logit = self._forward(train_input)
return final_logit
示例12: forward_eval
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def forward_eval(self, eval_input):
batch_norm_params = {'epsilon': 1e-5,
'scale': True,
'is_training': False,
'updates_collections': ops.GraphKeys.UPDATE_OPS}
with slim.arg_scope([layers.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.conv2d],
weights_regularizer=slim.l2_regularizer(self.cfg['NET']['weight_l2_scale'])):
final_logit = self._forward(eval_input)
return final_logit
示例13: resnet_arg_scope
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def resnet_arg_scope(is_training=True,
weight_decay=cfg.TRAIN.WEIGHT_DECAY,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
# NOTE 'is_training' here does not work because inside resnet it gets reset:
# https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py#L187
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': cfg.RESNET.BN_TRAIN,
'updates_collections': ops.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_regularizer=regularizers.l2_regularizer(weight_decay),
weights_initializer=initializers.variance_scaling_initializer(),
trainable=is_training,
activation_fn=nn_ops.relu,
normalizer_fn=layers.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([layers.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例14: BatchNormClassifier
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def BatchNormClassifier(self, inputs):
inputs = layers.batch_norm(inputs, decay=0.1, fused=None)
return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
示例15: _conv3d
# 需要導入模塊: from tensorflow.contrib.layers.python.layers import layers [as 別名]
# 或者: from tensorflow.contrib.layers.python.layers.layers import batch_norm [as 別名]
def _conv3d(input_data, k_d, k_h, k_w, c_o, s_d, s_h, s_w, name, relu=True, padding="SAME"):
c_i = input_data.get_shape()[-1].value
convolve = lambda i, k: tf.nn.conv3d(i, k, [1, s_d, s_h, s_w, 1], padding=padding)
with tf.variable_scope(name) as scope:
weights = tf.get_variable(name="weights", shape=[k_d, k_h, k_w, c_i, c_o],
regularizer=tf.contrib.layers.l2_regularizer(scale=0.0001),
initializer=tf.truncated_normal_initializer(stddev=1e-1, dtype=tf.float32))
#initializer=tf.contrib.layers.xavier_initializer(uniform=True))
conv = convolve(input_data, weights)
biases = tf.get_variable(name="biases", shape=[c_o], dtype=tf.float32,
initializer=tf.constant_initializer(value=0.0))
output = tf.nn.bias_add(conv, biases)
if relu:
output = tf.nn.relu(output, name=scope.name)
return batch_norm(output)