本文整理匯總了Python中tensorflow.contrib.layers.optimize_loss方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.optimize_loss方法的具體用法?Python layers.optimize_loss怎麽用?Python layers.optimize_loss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.layers
的用法示例。
在下文中一共展示了layers.optimize_loss方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: dnn_tanh
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def dnn_tanh(features, target):
target = tf.one_hot(target, 2, 1.0, 0.0)
# Organize continues features.
final_features = [tf.expand_dims(tf.cast(features[var], tf.float32), 1) for var in continues_vars]
# Embed categorical variables into distributed representation.
for var in categorical_vars:
feature = learn.ops.categorical_variable(
features[var + '_ids'], len(categorical_var_encoders[var].classes_),
embedding_size=CATEGORICAL_EMBED_SIZE, name=var)
final_features.append(feature)
# Concatenate all features into one vector.
features = tf.concat(1, final_features)
# Deep Neural Network
logits = layers.stack(features, layers.fully_connected, [10, 20, 10],
activation_fn=tf.tanh)
prediction, loss = learn.models.logistic_regression(logits, target)
train_op = layers.optimize_loss(loss,
tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.05)
return tf.argmax(prediction, dimension=1), loss, train_op
示例2: __init__
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def __init__(self, hidden_size, batch_size, learning_rate):
self.input_tensor = tf.placeholder(tf.float32, [None, 28 * 28])
with arg_scope([layers.conv2d, layers.conv2d_transpose],
activation_fn=concat_elu,
normalizer_fn=layers.batch_norm,
normalizer_params={'scale': True}):
with tf.variable_scope("model"):
D1 = discriminator(self.input_tensor) # positive examples
D_params_num = len(tf.trainable_variables())
G = decoder(tf.random_normal([batch_size, hidden_size]))
self.sampled_tensor = G
with tf.variable_scope("model", reuse=True):
D2 = discriminator(G) # generated examples
D_loss = self.__get_discrinator_loss(D1, D2)
G_loss = self.__get_generator_loss(D2)
params = tf.trainable_variables()
D_params = params[:D_params_num]
G_params = params[D_params_num:]
# train_discrimator = optimizer.minimize(loss=D_loss, var_list=D_params)
# train_generator = optimizer.minimize(loss=G_loss, var_list=G_params)
global_step = tf.contrib.framework.get_or_create_global_step()
self.train_discrimator = layers.optimize_loss(
D_loss, global_step, learning_rate / 10, 'Adam', variables=D_params, update_ops=[])
self.train_generator = layers.optimize_loss(
G_loss, global_step, learning_rate, 'Adam', variables=G_params, update_ops=[])
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
示例3: __init__
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def __init__(self, hidden_size, batch_size, learning_rate):
self.input_tensor = tf.placeholder(
tf.float32, [None, 28 * 28])
with arg_scope([layers.conv2d, layers.conv2d_transpose],
activation_fn=tf.nn.elu,
normalizer_fn=layers.batch_norm,
normalizer_params={'scale': True}):
with tf.variable_scope("model") as scope:
encoded = encoder(self.input_tensor, hidden_size * 2)
mean = encoded[:, :hidden_size]
stddev = tf.sqrt(tf.exp(encoded[:, hidden_size:]))
epsilon = tf.random_normal([tf.shape(mean)[0], hidden_size])
input_sample = mean + epsilon * stddev
output_tensor = decoder(input_sample)
with tf.variable_scope("model", reuse=True) as scope:
self.sampled_tensor = decoder(tf.random_normal(
[batch_size, hidden_size]))
vae_loss = self.__get_vae_cost(mean, stddev)
rec_loss = self.__get_reconstruction_cost(
output_tensor, self.input_tensor)
loss = vae_loss + rec_loss
self.train = layers.optimize_loss(loss, tf.contrib.framework.get_or_create_global_step(
), learning_rate=learning_rate, optimizer='Adam', update_ops=[])
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
示例4: build_train_graph
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def build_train_graph(loss, learning_rate=0.001, clip_norm=5.0):
"""
builds training graph
"""
train_args = {"learning_rate": learning_rate, "clip_norm": clip_norm}
logger.debug("building training graph: %s.", train_args)
learning_rate = tf.placeholder_with_default(learning_rate, [], "learning_rate")
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = layers.optimize_loss(loss, global_step, learning_rate, "Adam",
clip_gradients=clip_norm)
model = {"global_step": global_step, "train_op": train_op,
"learning_rate": learning_rate, "train_args": train_args}
return model
示例5: conv_model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def conv_model(feature, target, mode):
"""2-layer convolution model."""
# Convert the target to a one-hot tensor of shape (batch_size, 10) and
# with a on-value of 1 for each one-hot vector of length 10.
target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0)
# Reshape feature to 4d tensor with 2nd and 3rd dimensions being
# image width and height final dimension being the number of color channels.
feature = tf.reshape(feature, [-1, 28, 28, 1])
# First conv layer will compute 32 features for each 5x5 patch
with tf.variable_scope('conv_layer1'):
h_conv1 = layers.convolution(feature, 32, kernel_size=[5, 5],
activation_fn=tf.nn.relu)
h_pool1 = max_pool_2x2(h_conv1)
# Second conv layer will compute 64 features for each 5x5 patch.
with tf.variable_scope('conv_layer2'):
h_conv2 = layers.convolution(h_pool1, 64, kernel_size=[5, 5],
activation_fn=tf.nn.relu)
h_pool2 = max_pool_2x2(h_conv2)
# reshape tensor into a batch of vectors
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# Densely connected layer with 1024 neurons.
h_fc1 = layers.dropout(
layers.fully_connected(
h_pool2_flat, 1024, activation_fn=tf.nn.relu), keep_prob=0.5,
is_training=mode == tf.contrib.learn.ModeKeys.TRAIN)
# Compute logits (1 per class) and compute loss.
logits = layers.fully_connected(h_fc1, 10, activation_fn=None)
loss = tf.contrib.losses.softmax_cross_entropy(logits, target)
# Create a tensor for training op.
train_op = layers.optimize_loss(
loss, tf.contrib.framework.get_global_step(), optimizer='SGD',
learning_rate=0.001)
return tf.argmax(logits, 1), loss, train_op
示例6: dnn_tanh
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def dnn_tanh(features, target):
target = tf.one_hot(target, 2, 1.0, 0.0)
logits = layers.stack(features, layers.fully_connected, [10, 20, 10],
activation_fn=tf.tanh)
prediction, loss = learn.models.logistic_regression(logits, target)
train_op = layers.optimize_loss(loss,
tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.05)
return tf.argmax(prediction, dimension=1), loss, train_op
示例7: categorical_model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def categorical_model(features, target):
target = tf.one_hot(target, 2, 1.0, 0.0)
features = learn.ops.categorical_variable(
features, n_classes, embedding_size=EMBEDDING_SIZE, name='embarked')
prediction, loss = learn.models.logistic_regression(tf.squeeze(features, [1]), target)
train_op = layers.optimize_loss(loss,
tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.05)
return tf.argmax(prediction, dimension=1), loss, train_op
示例8: one_hot_categorical_model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def one_hot_categorical_model(features, target):
target = tf.one_hot(target, 2, 1.0, 0.0)
features = tf.one_hot(features, n_classes, 1.0, 0.0)
prediction, loss = learn.models.logistic_regression(
tf.squeeze(features, [1]), target)
train_op = layers.optimize_loss(loss,
tf.contrib.framework.get_global_step(), optimizer='SGD',
learning_rate=0.01)
return tf.argmax(prediction, dimension=1), loss, train_op
示例9: conv_model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def conv_model(features, target):
target = tf.one_hot(target, 10, 1.0, 0.0)
features = tf.expand_dims(features, 3)
features = tf.reduce_max(layers.conv2d(features, 12, [3, 3]), [1, 2])
features = tf.reshape(features, [-1, 12])
prediction, loss = learn.models.logistic_regression(features, target)
train_op = layers.optimize_loss(loss,
tf.contrib.framework.get_global_step(), optimizer='SGD',
learning_rate=0.01)
return tf.argmax(prediction, dimension=1), loss, train_op
# Create a classifier, train and predict.
示例10: conv_learn
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import optimize_loss [as 別名]
def conv_learn(X, y, mode):
# Ensure our images are 2d
X = tf.reshape(X, [-1, 36, 36, 1])
# We'll need these in one-hot format
y = tf.one_hot(tf.cast(y, tf.int32), 5, 1, 0)
# conv layer will compute 4 kernels for each 5x5 patch
with tf.variable_scope('conv_layer'):
# 5x5 convolution, pad with zeros on edges
h1 = layers.convolution2d(X, num_outputs=4,
kernel_size=[5, 5],
activation_fn=tf.nn.relu)
# 2x2 Max pooling, no padding on edges
p1 = tf.nn.max_pool(h1, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='VALID')
# Need to flatten conv output for use in dense layer
p1_size = np.product(
[s.value for s in p1.get_shape()[1:]])
p1f = tf.reshape(p1, [-1, p1_size ])
# densely connected layer with 32 neurons and dropout
h_fc1 = layers.fully_connected(p1f,
5,
activation_fn=tf.nn.relu)
drop = layers.dropout(h_fc1, keep_prob=0.5, is_training=mode == tf.contrib.learn.ModeKeys.TRAIN)
logits = layers.fully_connected(drop, 5, activation_fn=None)
loss = tf.losses.softmax_cross_entropy(y, logits)
# Setup the training function manually
train_op = layers.optimize_loss(
loss,
tf.contrib.framework.get_global_step(),
optimizer='Adam',
learning_rate=0.01)
return tf.argmax(logits, 1), loss, train_op
# Use generic estimator with our function
開發者ID:PacktPublishing,項目名稱:Hands-On-Deep-Learning-with-TensorFlow,代碼行數:39,代碼來源:extracting_weights.py