當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.l2_regularizer方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.l2_regularizer方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.l2_regularizer方法的具體用法?Python layers.l2_regularizer怎麽用?Python layers.l2_regularizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.l2_regularizer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: darkconv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def darkconv(*args, **kwargs):
    scope = kwargs.pop('scope', None)
    onlyconv = kwargs.pop('onlyconv', False)
    with tf.variable_scope(scope):
        conv_kwargs = {
            'padding': 'SAME',
            'activation_fn': None,
            'weights_initializer': variance_scaling_initializer(1.53846),
            'weights_regularizer': l2(5e-4),
            'biases_initializer': None,
            'scope': 'conv'}
        if onlyconv:
            conv_kwargs.pop('biases_initializer')
        with arg_scope([conv2d], **conv_kwargs):
            x = conv2d(*args, **kwargs)
            if onlyconv: return x
            x = batch_norm(x, decay=0.99, center=False, scale=True,
                           epsilon=1e-5, scope='bn')
            x = bias_add(x, scope='bias')
            x = leaky_relu(x, alpha=0.1, name='lrelu')
            return x 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:23,代碼來源:layers.py

示例2: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def __init__(self,
               params,
               device_assigner=None,
               optimizer_class=adagrad.AdagradOptimizer,
               **kwargs):

    self.device_assigner = (
        device_assigner or framework_variables.VariableDeviceChooser())

    self.params = params

    self.optimizer = optimizer_class(self.params.learning_rate)

    self.is_regression = params.regression

    self.regularizer = None
    if params.regularization == "l1":
      self.regularizer = layers.l1_regularizer(
          self.params.regularization_strength)
    elif params.regularization == "l2":
      self.regularizer = layers.l2_regularizer(
          self.params.regularization_strength) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:hybrid_model.py

示例3: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def __init__(self,
               params,
               device_assigner=None,
               optimizer_class=adagrad.AdagradOptimizer,
               **kwargs):

    self.device_assigner = (
        device_assigner or tensor_forest.RandomForestDeviceAssigner())

    self.params = params

    self.optimizer = optimizer_class(self.params.learning_rate)

    self.is_regression = params.regression

    self.regularizer = None
    if params.regularization == "l1":
      self.regularizer = layers.l1_regularizer(
          self.params.regularization_strength)
    elif params.regularization == "l2":
      self.regularizer = layers.l2_regularizer(
          self.params.regularization_strength) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:hybrid_model.py

示例4: resnet_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def resnet_arg_scope(
        weight_decay=0.0001,
        batch_norm_decay=0.997,
        batch_norm_epsilon=1e-5,
        batch_norm_scale=True,
):
    batch_norm_params = {
        'decay': batch_norm_decay,
        'epsilon': batch_norm_epsilon,
        'scale': batch_norm_scale,
    }
    l2_regularizer = layers.l2_regularizer(weight_decay)

    arg_scope_layers = arg_scope(
        [layers.conv2d, my_layers.preact_conv2d, layers.fully_connected],
        weights_initializer=layers.variance_scaling_initializer(),
        weights_regularizer=l2_regularizer,
        activation_fn=tf.nn.relu)
    arg_scope_conv = arg_scope(
        [layers.conv2d, my_layers.preact_conv2d],
        normalizer_fn=layers.batch_norm,
        normalizer_params=batch_norm_params)
    with arg_scope_layers, arg_scope_conv as arg_sc:
        return arg_sc 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:26,代碼來源:build_resnet.py

示例5: embed_labels

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def embed_labels(inputs, num_classes, output_dim, sn,
                 weight_decay_rate=1e-5,
                 reuse=None, scope=None):
    # TODO move regularizer definitions to model
    weights_regularizer = ly.l2_regularizer(weight_decay_rate)

    with tf.variable_scope(scope, 'embedding', [inputs], reuse=reuse) as sc:
        inputs = tf.convert_to_tensor(inputs)

        weights = tf.get_variable(name="weights", shape=(num_classes, output_dim),
                                  initializer=init_ops.random_normal_initializer)

        # Spectral Normalization
        if sn:
            weights = spectral_normed_weight(weights, num_iters=1, update_collection=Config.SPECTRAL_NORM_UPDATE_OPS)

        embed_out = tf.nn.embedding_lookup(weights, inputs)

    return embed_out 
開發者ID:SketchyScene,項目名稱:SketchySceneColorization,代碼行數:21,代碼來源:mru.py

示例6: conv2d_fixed_padding

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format,
                         weight_decay):
  """Strided 2-D convolution with explicit padding."""
  # The padding is consistent and is based only on `kernel_size`, not on the
  # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
  if strides > 1:
    inputs = fixed_padding(inputs, kernel_size, data_format)

  if weight_decay is not None:
    weight_decay = contrib_layers.l2_regularizer(weight_decay)

  return tf.layers.conv2d(
      inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
      padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
      kernel_initializer=tf.variance_scaling_initializer(),
      kernel_regularizer=weight_decay,
      data_format=data_format) 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:19,代碼來源:film_resnet_model.py

示例7: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def forward(self, images, num_classes=None, is_training=True):
    assert num_classes is not None, 'num_classes must be given when is_training=True'
    # Forward
    features, _ = self.backbone(images, is_training=is_training)
    # Logits
    with tf.variable_scope('classifier'):
      features_drop = layers.dropout(features, keep_prob=0.5, is_training=is_training)
      logit = layers.fully_connected(features_drop, num_classes, activation_fn=None, 
                                     weights_initializer=tf.random_normal_initializer(stddev=0.001),
                                     weights_regularizer=layers.l2_regularizer(self.weight_decay),
                                     biases_initializer=None,
                                     scope='fc_classifier')
    logits = {}
    logits['logits'] = logit

    return logits 
開發者ID:medivhna,項目名稱:TF_Face_Toolbox,代碼行數:18,代碼來源:resnet.py

示例8: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def forward(self, images, num_classes=None, is_training=True):
    if is_training:
      assert num_classes is not None, 'num_classes must be given when is_training=True'
      # Forward
      features = self.backbone(images, is_training=is_training)
      # Logits
      with tf.variable_scope('classifier'):
        print(features)
        logit = layers.fully_connected(features, num_classes, activation_fn=None, 
                                       weights_initializer=tf.random_normal_initializer(stddev=0.001),
                                       weights_regularizer=layers.l2_regularizer(self.weight_decay),
                                       biases_initializer=None,
                                       scope='fc_classifier')
      print(num_classes)
      logits = {}
      logits['logits'] = logit

      return logits
    else:
      features = self.backbone(images, is_training=is_training)
      features_flipped = self.backbone(tf.reverse(images, axis=[2]), is_training=is_training, reuse=True)
      features = (features+features_flipped)/2

      return features 
開發者ID:medivhna,項目名稱:TF_Face_Toolbox,代碼行數:26,代碼來源:sphere.py

示例9: testNoSummariesOnGPU

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def testNoSummariesOnGPU(self):
    with tf.Graph().as_default():
      deploy_config = model_deploy.DeploymentConfig(num_clones=2)

      # clone function creates a fully_connected layer with a regularizer loss.
      def ModelFn():
        inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32)
        reg = layers.l2_regularizer(0.001)
        layers.fully_connected(inputs, 30, weights_regularizer=reg)

      model = model_deploy.deploy(
          deploy_config, ModelFn,
          optimizer=tf.train.GradientDescentOptimizer(1.0))
      # The model summary op should have a few summary inputs and all of them
      # should be on the CPU.
      self.assertTrue(model.summary_op.op.inputs)
      for inp in  model.summary_op.op.inputs:
        self.assertEqual('/device:CPU:0', inp.device) 
開發者ID:bgshih,項目名稱:aster,代碼行數:20,代碼來源:model_deploy_test.py

示例10: testNoSummariesOnGPUForEvals

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def testNoSummariesOnGPUForEvals(self):
    with tf.Graph().as_default():
      deploy_config = model_deploy.DeploymentConfig(num_clones=2)

      # clone function creates a fully_connected layer with a regularizer loss.
      def ModelFn():
        inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32)
        reg = layers.l2_regularizer(0.001)
        layers.fully_connected(inputs, 30, weights_regularizer=reg)

      # No optimizer here, it's an eval.
      model = model_deploy.deploy(deploy_config, ModelFn)
      # The model summary op should have a few summary inputs and all of them
      # should be on the CPU.
      self.assertTrue(model.summary_op.op.inputs)
      for inp in  model.summary_op.op.inputs:
        self.assertEqual('/device:CPU:0', inp.device) 
開發者ID:bgshih,項目名稱:aster,代碼行數:19,代碼來源:model_deploy_test.py

示例11: _build_regularizer

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def _build_regularizer(regularizer):
  """Builds a regularizer from config.

  Args:
    regularizer: hyperparams_pb2.Hyperparams.regularizer proto.

  Returns:
    regularizer.

  Raises:
    ValueError: On unknown regularizer.
  """
  regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
  if  regularizer_oneof == 'l1_regularizer':
    return layers.l1_regularizer(scale=float(regularizer.l1_regularizer.weight))
  if regularizer_oneof == 'l2_regularizer':
    return layers.l2_regularizer(scale=float(regularizer.l2_regularizer.weight))
  raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof)) 
開發者ID:bgshih,項目名稱:aster,代碼行數:20,代碼來源:hyperparams_builder.py

示例12: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def forward(self, decoder_hidden, dec_in, decoder_category, reuse=False, trainable=True, is_training=True):
        with tf.variable_scope(self.name_scope) as vs:
            if(reuse):
                vs.reuse_variables()
            lrelu = VAE.lrelu

            dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training)
            
            
            y = tf.concat([decoder_hidden, dec_in_enc], 1)

            h0 = tcl.fully_connected(y, 512, scope="fc3", activation_fn=lrelu, weights_regularizer=tcl.l2_regularizer(self.re_term))

            h0 = tcl.dropout(h0, 0.5, is_training=is_training)

        
            
            h0 = tcl.fully_connected(h0, 54, scope="fc4", activation_fn=None,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term),)

            h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3)

            
            return h0 
開發者ID:chaneyddtt,項目名稱:Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,代碼行數:26,代碼來源:humanEncoder.py

示例13: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def forward(self, dec_in, reuse=False, trainable=True, is_training=True):
        with tf.variable_scope(self.name_scope) as vs:
            if (reuse):
                vs.reuse_variables()
            lrelu = VAE.lrelu

            dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training)


            h0 = tcl.fully_connected(dec_in_enc, 512, scope="fc3", activation_fn=lrelu,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term))

            h0 = tcl.dropout(h0, 0.5, is_training=is_training)

            h0 = tcl.fully_connected(h0, 54, scope="fc4", activation_fn=None,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term), )

            h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3)

            return h0 
開發者ID:chaneyddtt,項目名稱:Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,代碼行數:22,代碼來源:humanEncoder_ablation.py

示例14: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def forward(self, decoder_hidden, dec_in, decoder_category, reuse=False, trainable=True, is_training=True):
        with tf.variable_scope(self.name_scope) as vs:
            if (reuse):
                vs.reuse_variables()
            lrelu = VAE.lrelu

            dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training)

            y = tf.concat([decoder_hidden, dec_in_enc], 1)

            h0 = tcl.fully_connected(y, 512, scope="fc3", activation_fn=lrelu,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term))

            h0 = tcl.dropout(h0, 0.5, is_training=is_training)

            h0 = tcl.fully_connected(h0, 70, scope="fc4", activation_fn=None,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term), )

            h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3)

            return h0 
開發者ID:chaneyddtt,項目名稱:Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,代碼行數:23,代碼來源:humanEncoder_cmu.py

示例15: _project

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import l2_regularizer [as 別名]
def _project(self, q, k, v, scope="Linearity", reuse=None):
        """Project queries, keys, values with a linear layer.

        Note: We project the inputs for q, k, v *before* splitting to prepare inputs for each head.
        This differs from the order in "Attention Is All You Need," but is functionally equivalent.
        """
        def _project_one(x, d, inner_scope):
            return tf_layers.fully_connected(x, d, activation_fn=None, biases_initializer=None,
                                             weights_regularizer=tf_layers.l2_regularizer(scale=self.l2_lambda),
                                             scope=inner_scope, reuse=reuse)

        with tf.variable_scope(scope, reuse=reuse):
            q_projected = _project_one(q, self.d_model, "q")
            k_projected = _project_one(k, self.d_model, "k")
            v_projected = _project_one(v, self.d_model, "v")

        return q_projected, k_projected, v_projected 
開發者ID:chrischute,項目名稱:squad-transformer,代碼行數:19,代碼來源:modules.py


注:本文中的tensorflow.contrib.layers.l2_regularizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。