當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.fully_connected方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.fully_connected方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.fully_connected方法的具體用法?Python layers.fully_connected怎麽用?Python layers.fully_connected使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.fully_connected方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: extract_parameters

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def extract_parameters(self, features):
    output_dim = self.get_num_filter_parameters(
    ) + self.get_num_mask_parameters()
    features = ly.fully_connected(
        features,
        self.cfg.fc1_size,
        scope='fc1',
        activation_fn=lrelu,
        weights_initializer=tf.contrib.layers.xavier_initializer())
    features = ly.fully_connected(
        features,
        output_dim,
        scope='fc2',
        activation_fn=None,
        weights_initializer=tf.contrib.layers.xavier_initializer())
    return features[:, :self.get_num_filter_parameters()], \
           features[:, self.get_num_filter_parameters():]

  # Should be implemented in child classes 
開發者ID:yuanming-hu,項目名稱:exposure,代碼行數:21,代碼來源:filters.py

示例2: var_dropout

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def var_dropout(x, n, net_size, n_particles, is_training):
    normalizer_params = {'is_training': is_training,
                         'updates_collections': None}
    bn = zs.BayesianNet()
    h = x
    for i, [n_in, n_out] in enumerate(zip(net_size[:-1], net_size[1:])):
        eps_mean = tf.ones([n, n_in])
        eps = bn.normal(
            'layer' + str(i) + '/eps', eps_mean, std=1.,
            n_samples=n_particles, group_ndims=1)
        h = layers.fully_connected(
            h * eps, n_out, normalizer_fn=layers.batch_norm,
            normalizer_params=normalizer_params)
        if i < len(net_size) - 2:
            h = tf.nn.relu(h)
    y = bn.categorical('y', h)
    bn.deterministic('y_logit', h)
    return bn 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:20,代碼來源:variational_dropout.py

示例3: _build_net

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def _build_net(self, input_BO, scope):
        """ The Actor network.
        
        Uses ReLUs for all hidden layers, but a tanh to the output to bound the
        action. This follows their 'low-dimensional networks' using 400 and 300
        units for the hidden layers. Set `reuse=False`. I don't use batch
        normalization or their precise weight initialization.
        """
        with tf.variable_scope(scope, reuse=False):
            hidden1 = layers.fully_connected(input_BO,
                    num_outputs=400,
                    weights_initializer=layers.xavier_initializer(),
                    activation_fn=tf.nn.relu)
            hidden2 = layers.fully_connected(hidden1, 
                    num_outputs=300,
                    weights_initializer=layers.xavier_initializer(),
                    activation_fn=tf.nn.relu)
            actions_BA = layers.fully_connected(hidden2,
                    num_outputs=self.ac_dim,
                    weights_initializer=layers.xavier_initializer(),
                    activation_fn=tf.nn.tanh) # Note the tanh!
            # This should broadcast, but haven't tested with ac_dim > 1.
            actions_BA = tf.multiply(actions_BA, self.ac_high)
            return actions_BA 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:26,代碼來源:ddpg.py

示例4: _make_network

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def _make_network(self, data_in, out_dim):
        """ Build the network with the same architecture following OpenAI's paper.

        Returns the final *layer* of the network, which corresponds to our
        chosen action.  There is no non-linearity for the last layer because
        different envs have different action ranges.
        """
        with tf.variable_scope("ESAgent", reuse=False):
            out = data_in
            out = layers.fully_connected(out, num_outputs=64,
                    weights_initializer = layers.xavier_initializer(uniform=True),
                    #weights_initializer = utils.normc_initializer(0.5),
                    activation_fn = tf.nn.tanh)
            out = layers.fully_connected(out, num_outputs=64,
                    weights_initializer = layers.xavier_initializer(uniform=True),
                    #weights_initializer = utils.normc_initializer(0.5),
                    activation_fn = tf.nn.tanh)
            out = layers.fully_connected(out, num_outputs=out_dim,
                    weights_initializer = layers.xavier_initializer(uniform=True),
                    #weights_initializer = utils.normc_initializer(0.5),
                    activation_fn = None)
            return out 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:24,代碼來源:es.py

示例5: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def __init__(self,
               params,
               device_assigner=None,
               optimizer_class=adagrad.AdagradOptimizer,
               **kwargs):

    super(HardDecisionsToDataThenNN, self).__init__(
        params,
        device_assigner=device_assigner,
        optimizer_class=optimizer_class,
        **kwargs)

    self.layers = [decisions_to_data.HardDecisionsToDataLayer(
        params, 0, device_assigner),
                   fully_connected.FullyConnectedLayer(
                       params, 1, device_assigner=device_assigner)] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:hard_decisions_to_data_then_nn.py

示例6: discriminator_res

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def discriminator_res(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    # last layer must be linear
    # H = tf.squeeze(H, [1,2])
    # pdb.set_trace()
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    H_dis_0 = layers.fully_connected(tf.nn.dropout(H, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_1',
                                   reuse=is_reuse)
    H_dis_0n = tf.nn.relu(H_dis_0)                               
    H_dis_1 = layers.fully_connected(tf.nn.dropout(H_dis_0n, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_2',
                                   reuse=is_reuse)
    H_dis_1n = tf.nn.relu(H_dis_1) + H_dis_0
    H_dis_2 = layers.fully_connected(tf.nn.dropout(H_dis_1n, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_3',
                                   reuse=is_reuse)
    H_dis_2n = tf.nn.relu(H_dis_2) + H_dis_1
    H_dis_3 = layers.fully_connected(tf.nn.dropout(H_dis_2n, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_4',
                                   reuse=is_reuse)

    logits = layers.linear(tf.nn.dropout(H_dis_3, keep_prob=dropout), num_outputs=num_outputs,
                           biases_initializer=biasInit, scope=prefix + 'dis_10', reuse=is_reuse)
    return logits 
開發者ID:yyht,項目名稱:BERT,代碼行數:26,代碼來源:swem_utils.py

示例7: BuildModel

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def BuildModel(self, resnet_fn, block_fn):
    # We use this model as a test case because the slim.nets.resnet module is
    # used in some production.
    #
    # The model looks as follows:
    #
    # Image --> unit_1/shortcut
    # Image --> unit_1/conv1 --> unit_1/conv2 --> unit_1/conv3
    #
    # unit_1/shortcut + unit_1/conv3 --> unit_1 (residual connection)
    #
    # unit_1 --> unit_2/conv1  -> unit_2/conv2 --> unit_2/conv3
    #
    # unit_1 + unit_2/conv3 --> unit_2 (residual connection)
    #
    # In between, there are strided convolutions and pooling ops, but these
    # should not affect the regularizer.
    blocks = [
        block_fn('block1', base_depth=7, num_units=2, stride=2),
    ]
    image = tf.constant(0.0, shape=[1, 2, 2, NUM_CHANNELS])
    net = resnet_fn(
        image, blocks, include_root_block=False, is_training=False)[0]
    net = tf.reduce_mean(net, axis=(1, 2))
    return slim.layers.fully_connected(net, 23, scope='FC') 
開發者ID:google-research,項目名稱:morph-net,代碼行數:27,代碼來源:flop_regularizer_test.py

示例8: fully_connected

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def fully_connected(self, *args, **kwargs):
    """Masks NUM_OUTPUTS from the function pointed to by 'fully_connected'.

    The object's parameterization has precedence over the given NUM_OUTPUTS
    argument. The resolution of the op names uses
    tf.contrib.framework.get_name_scope() and kwargs['scope'].

    Args:
      *args: Arguments for the operation.
      **kwargs: Key arguments for the operation.

    Returns:
      The result of the application of the function_map['fully_connected'] to
      the given 'inputs', '*args' and '**kwargs' while possibly overriding
      NUM_OUTPUTS according the parameterization.

    Raises:
      ValueError: If kwargs does not contain a key named 'scope'.
    """
    inputs = _get_from_args_or_kwargs('inputs', 0, args, kwargs)
    if inputs.shape.ndims != 2:
      raise ValueError(
          'ConfigurableOps does not suport fully_connected with rank != 2')
    fn, suffix = self._get_function_and_suffix('fully_connected')
    return self._mask(fn, suffix, *args, **kwargs) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:27,代碼來源:configurable_ops.py

示例9: model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def model(img_in, num_actions, scope, reuse=False, layer_norm=False):
    """As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        conv_out = layers.flatten(out)

        with tf.variable_scope("action_value"):
            value_out = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
            if layer_norm:
                value_out = layer_norm_fn(value_out, relu=True)
            else:
                value_out = tf.nn.relu(value_out)
            value_out = layers.fully_connected(value_out, num_outputs=num_actions, activation_fn=None)
        return value_out 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:21,代碼來源:model.py

示例10: model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def model(img_in, num_actions, scope, noisy=False, reuse=False,
          concat_softmax=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8,
                                       stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4,
                                       stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3,
                                       stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)

        with tf.variable_scope("action_value"):
            if noisy:
                # Apply noisy network on fully connected layers
                # ref: https://arxiv.org/abs/1706.10295
                out = noisy_dense(out, name='noisy_fc1', size=512,
                                  activation_fn=tf.nn.relu)
                out = noisy_dense(out, name='noisy_fc2', size=num_actions)
            else:
                out = layers.fully_connected(out, num_outputs=512,
                                             activation_fn=tf.nn.relu)
                out = layers.fully_connected(out, num_outputs=num_actions,
                                             activation_fn=None)
            # V: Softmax - inspired by deep-rl-attack #
            if concat_softmax:
                out = tf.nn.softmax(out)
        return out 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:32,代碼來源:model.py

示例11: atari_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def atari_model(img_in, num_actions, scope, reuse=False):
    # as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)
        with tf.variable_scope("action_value"):
            out = layers.fully_connected(out, num_outputs=512,         activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)

        return out 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:17,代碼來源:run_dqn_atari.py

示例12: atari_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def atari_model(ram_in, num_actions, scope, reuse=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = ram_in
        #out = tf.concat(1,(ram_in[:,4:5],ram_in[:,8:9],ram_in[:,11:13],ram_in[:,21:22],ram_in[:,50:51], ram_in[:,60:61],ram_in[:,64:65]))
        with tf.variable_scope("action_value"):
            out = layers.fully_connected(out, num_outputs=256, activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=128, activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=64, activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)

        return out 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:13,代碼來源:run_dqn_ram.py

示例13: lander_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def lander_model(obs, num_actions, scope, reuse=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = obs
        with tf.variable_scope("action_value"):
            out = layers.fully_connected(out, num_outputs=64, activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=64, activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)

        return out 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:11,代碼來源:run_dqn_lander.py

示例14: _mlp

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def _mlp(hiddens, inpt, num_actions, scope, reuse=False, layer_norm=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = inpt
        for hidden in hiddens:
            out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None)
            if layer_norm:
                out = layers.layer_norm(out, center=True, scale=True)
            out = tf.nn.relu(out)
        q_out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
        return q_out 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:12,代碼來源:models.py

示例15: _cnn_to_mlp

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import fully_connected [as 別名]
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = inpt
        with tf.variable_scope("convnet"):
            for num_outputs, kernel_size, stride in convs:
                out = layers.convolution2d(out,
                                           num_outputs=num_outputs,
                                           kernel_size=kernel_size,
                                           stride=stride,
                                           activation_fn=tf.nn.relu)
        conv_out = layers.flatten(out)
        with tf.variable_scope("action_value"):
            action_out = conv_out
            for hidden in hiddens:
                action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
                if layer_norm:
                    action_out = layers.layer_norm(action_out, center=True, scale=True)
                action_out = tf.nn.relu(action_out)
            action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)

        if dueling:
            with tf.variable_scope("state_value"):
                state_out = conv_out
                for hidden in hiddens:
                    state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
                    if layer_norm:
                        state_out = layers.layer_norm(state_out, center=True, scale=True)
                    state_out = tf.nn.relu(state_out)
                state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
            action_scores_mean = tf.reduce_mean(action_scores, 1)
            action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
            q_out = state_score + action_scores_centered
        else:
            q_out = action_scores
        return q_out 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:37,代碼來源:models.py


注:本文中的tensorflow.contrib.layers.fully_connected方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。