當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.flatten方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.flatten方法的具體用法?Python layers.flatten怎麽用?Python layers.flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.flatten方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_aux_head

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def _build_aux_head(net, end_points, num_classes, hparams, scope):
  """Auxiliary head used for all models across all datasets."""
  with tf.variable_scope(scope):
    aux_logits = tf.identity(net)
    with tf.variable_scope('aux_logits'):
      aux_logits = slim.avg_pool2d(
          aux_logits, [5, 5], stride=3, padding='VALID')
      aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj')
      aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0')
      aux_logits = tf.nn.relu(aux_logits)
      # Shape of feature map before the final layer.
      shape = aux_logits.shape
      if hparams.data_format == 'NHWC':
        shape = shape[1:3]
      else:
        shape = shape[2:4]
      aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID')
      aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1')
      aux_logits = tf.nn.relu(aux_logits)
      aux_logits = contrib_layers.flatten(aux_logits)
      aux_logits = slim.fully_connected(aux_logits, num_classes)
      end_points['AuxLogits'] = aux_logits 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:24,代碼來源:nasnet_model.py

示例2: model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, reuse=False, layer_norm=False):
    """As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        conv_out = layers.flatten(out)

        with tf.variable_scope("action_value"):
            value_out = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
            if layer_norm:
                value_out = layer_norm_fn(value_out, relu=True)
            else:
                value_out = tf.nn.relu(value_out)
            value_out = layers.fully_connected(value_out, num_outputs=num_actions, activation_fn=None)
        return value_out 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:21,代碼來源:model.py

示例3: create_visual_encoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def create_visual_encoder(self, h_size, activation, num_layers):
        """
        Builds a set of visual (CNN) encoders.
        :param h_size: Hidden layer size.
        :param activation: What type of activation function to use for layers.
        :param num_layers: number of hidden layers to create.
        :return: List of hidden layer tensors.
        """
        conv1 = tf.layers.conv2d(self.visual_in[-1], 16, kernel_size=[8, 8], strides=[4, 4],
                                 activation=tf.nn.elu)
        conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2, 2],
                                 activation=tf.nn.elu)
        hidden = c_layers.flatten(conv2)

        for j in range(num_layers):
            hidden = tf.layers.dense(hidden, h_size, use_bias=False, activation=activation)
        return hidden 
開發者ID:ArztSamuel,項目名稱:DRL_DeliveryDuel,代碼行數:19,代碼來源:models.py

示例4: encoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def encoder(input_tensor, output_size):
    '''Create encoder network.

    Args:
        input_tensor: a batch of flattened images [batch_size, 28*28]

    Returns:
        A tensor that expresses the encoder network
    '''
    net = tf.reshape(input_tensor, [-1, 28, 28, 1])
    net = layers.conv2d(net, 32, 5, stride=2)
    net = layers.conv2d(net, 64, 5, stride=2)
    net = layers.conv2d(net, 128, 5, stride=2, padding='VALID')
    net = layers.dropout(net, keep_prob=0.9)
    net = layers.flatten(net)
    return layers.fully_connected(net, output_size, activation_fn=None) 
開發者ID:ikostrikov,項目名稱:TensorFlow-VAE-GAN-DRAW,代碼行數:18,代碼來源:utils.py

示例5: decoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def decoder(input_tensor):
    '''Create decoder network.

        If input tensor is provided then decodes it, otherwise samples from
        a sampled vector.
    Args:
        input_tensor: a batch of vectors to decode

    Returns:
        A tensor that expresses the decoder network
    '''

    net = tf.expand_dims(input_tensor, 1)
    net = tf.expand_dims(net, 1)
    net = layers.conv2d_transpose(net, 128, 3, padding='VALID')
    net = layers.conv2d_transpose(net, 64, 5, padding='VALID')
    net = layers.conv2d_transpose(net, 32, 5, stride=2)
    net = layers.conv2d_transpose(
        net, 1, 5, stride=2, activation_fn=tf.nn.sigmoid)
    net = layers.flatten(net)
    return net 
開發者ID:ikostrikov,項目名稱:TensorFlow-VAE-GAN-DRAW,代碼行數:23,代碼來源:utils.py

示例6: _block_output

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def _block_output(net, endpoints, num_classes, dropout_keep_prob=0.5):
    with tf.variable_scope('Output'):
        net = layers.flatten(net, scope='Flatten')

        # 7 x 7 x 512
        net = layers.fully_connected(net, 4096, scope='Fc1')
        net = endpoints['Output/Fc1'] = layers.dropout(net, dropout_keep_prob, scope='Dropout1')

        # 1 x 1 x 4096
        net = layers.fully_connected(net, 4096, scope='Fc2')
        net = endpoints['Output/Fc2'] = layers.dropout(net, dropout_keep_prob, scope='Dropout2')

        logits = layers.fully_connected(net, num_classes, activation_fn=None, scope='Logits')
        # 1 x 1 x num_classes
        endpoints['Logits'] = logits
    return logits 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:18,代碼來源:build_vgg.py

示例7: model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, noisy=False, reuse=False):
    """As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)

        with tf.variable_scope("action_value"):
            if noisy:
                # Apply noisy network on fully connected layers
                # ref: https://arxiv.org/abs/1706.10295
                out = noisy_dense(out, name='noisy_fc1', size=512, activation_fn=tf.nn.relu)
                out = noisy_dense(out, name='noisy_fc2', size=num_actions)
            else:
                out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
                out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)

        return out 
開發者ID:wenh123,項目名稱:NoisyNet-DQN,代碼行數:24,代碼來源:model.py

示例8: model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, reuse=False, concat_softmax=False):
    """As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)

        with tf.variable_scope("action_value"):
            out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
            if concat_softmax:
                out = tf.nn.softmax(out)

        return out 
開發者ID:yenchenlin,項目名稱:rl-attack-detection,代碼行數:20,代碼來源:model.py

示例9: dueling_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def dueling_model(img_in, num_actions, scope, reuse=False):
    """As described in https://arxiv.org/abs/1511.06581"""
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)

        with tf.variable_scope("state_value"):
            state_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
            state_score = layers.fully_connected(state_hidden, num_outputs=1, activation_fn=None)
        with tf.variable_scope("action_value"):
            actions_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
            action_scores = layers.fully_connected(actions_hidden, num_outputs=num_actions, activation_fn=None)
            action_scores_mean = tf.reduce_mean(action_scores, 1)
            action_scores = action_scores - tf.expand_dims(action_scores_mean, 1)

        return state_score + action_scores 
開發者ID:yenchenlin,項目名稱:rl-attack-detection,代碼行數:23,代碼來源:model.py

示例10: create_visual_observation_encoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def create_visual_observation_encoder(self, image_input, h_size, activation, num_layers, scope, reuse):
        """
        Builds a set of visual (CNN) encoders.
        :param reuse: Whether to re-use the weights within the same scope.
        :param scope: The scope of the graph within which to create the ops.
        :param image_input: The placeholder for the image input to use.
        :param h_size: Hidden layer size.
        :param activation: What type of activation function to use for layers.
        :param num_layers: number of hidden layers to create.
        :return: List of hidden layer tensors.
        """
        with tf.variable_scope(scope):
            conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8], strides=[4, 4],
                                     activation=tf.nn.elu, reuse=reuse, name="conv_1")
            conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2, 2],
                                     activation=tf.nn.elu, reuse=reuse, name="conv_2")
            hidden = c_layers.flatten(conv2)

        with tf.variable_scope(scope+'/'+'flat_encoding'):
            hidden_flat = self.create_continuous_observation_encoder(hidden, h_size, activation,
                                                                     num_layers, scope, reuse)
        return hidden_flat 
開發者ID:xkiwilabs,項目名稱:DQN-using-PyTorch-and-ML-Agents,代碼行數:24,代碼來源:models.py

示例11: __call__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def __call__(self, h):
        # sequence -> [b, l, v]
        _, l, v = h.get_shape().as_list()
        h = tf.reshape(h, [-1, l, 1, v])
        with tf.variable_scope("textmover", reuse=tf.AUTO_REUSE):
            h0 = layers.convolution2d(
                h, v, [4, 1], [2, 1],
                activation_fn=tf.nn.softplus
            )
            h1 = layers.convolution2d(
                h0, v, [4, 1], [1, 1],
                activation_fn=tf.nn.softplus
            )
            h2 = layers.convolution2d(
                h1, v, [4, 1], [2, 1],
                activation_fn=tf.nn.softplus
            )
            h = layers.flatten(h2)
            h = layers.fully_connected(
                h, 1, activation_fn=tf.identity
            )
            return h 
開發者ID:desire2020,項目名稱:CoT,代碼行數:24,代碼來源:mediator.py

示例12: build_conv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def build_conv(self):

        self.inputs = tf.placeholder(tf.float32, [None, *self.state_size],
                                     name='Input_state')

        with tf.variable_scope('Convolutional_Layers'):
            self.conv1 = slim.conv2d(activation_fn=tf.nn.relu,
                                     inputs=self.inputs,
                                     num_outputs=16,
                                     kernel_size=[8, 8],
                                     stride=[4, 4],
                                     padding='VALID')
            self.conv2 = slim.conv2d(activation_fn=tf.nn.relu,
                                     inputs=self.conv1,
                                     num_outputs=32,
                                     kernel_size=[4, 4],
                                     stride=[2, 2],
                                     padding='VALID')

        # Flatten the output
        flat_conv2 = flatten(self.conv2)
        self.hidden = slim.fully_connected(flat_conv2, 256,
                                           activation_fn=tf.nn.relu)
        return self.inputs 
開發者ID:SuReLI,項目名稱:Deep-RL-agents,代碼行數:26,代碼來源:NetworkArchitecture.py

示例13: model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, noisy=False, reuse=False,
          concat_softmax=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8,
                                       stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4,
                                       stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3,
                                       stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)

        with tf.variable_scope("action_value"):
            if noisy:
                # Apply noisy network on fully connected layers
                # ref: https://arxiv.org/abs/1706.10295
                out = noisy_dense(out, name='noisy_fc1', size=512,
                                  activation_fn=tf.nn.relu)
                out = noisy_dense(out, name='noisy_fc2', size=num_actions)
            else:
                out = layers.fully_connected(out, num_outputs=512,
                                             activation_fn=tf.nn.relu)
                out = layers.fully_connected(out, num_outputs=num_actions,
                                             activation_fn=None)
            # V: Softmax - inspired by deep-rl-attack #
            if concat_softmax:
                out = tf.nn.softmax(out)
        return out 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:32,代碼來源:model.py

示例14: atari_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def atari_model(img_in, num_actions, scope, reuse=False):
    # as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)
        with tf.variable_scope("action_value"):
            out = layers.fully_connected(out, num_outputs=512,         activation_fn=tf.nn.relu)
            out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)

        return out 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:17,代碼來源:run_dqn_atari.py

示例15: _cnn_to_mlp

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = inpt
        with tf.variable_scope("convnet"):
            for num_outputs, kernel_size, stride in convs:
                out = layers.convolution2d(out,
                                           num_outputs=num_outputs,
                                           kernel_size=kernel_size,
                                           stride=stride,
                                           activation_fn=tf.nn.relu)
        conv_out = layers.flatten(out)
        with tf.variable_scope("action_value"):
            action_out = conv_out
            for hidden in hiddens:
                action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
                if layer_norm:
                    action_out = layers.layer_norm(action_out, center=True, scale=True)
                action_out = tf.nn.relu(action_out)
            action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)

        if dueling:
            with tf.variable_scope("state_value"):
                state_out = conv_out
                for hidden in hiddens:
                    state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
                    if layer_norm:
                        state_out = layers.layer_norm(state_out, center=True, scale=True)
                    state_out = tf.nn.relu(state_out)
                state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
            action_scores_mean = tf.reduce_mean(action_scores, 1)
            action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
            q_out = state_score + action_scores_centered
        else:
            q_out = action_scores
        return q_out 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:37,代碼來源:models.py


注:本文中的tensorflow.contrib.layers.flatten方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。