本文整理匯總了Python中tensorflow.contrib.layers.flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.flatten方法的具體用法?Python layers.flatten怎麽用?Python layers.flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.layers
的用法示例。
在下文中一共展示了layers.flatten方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build_aux_head
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def _build_aux_head(net, end_points, num_classes, hparams, scope):
"""Auxiliary head used for all models across all datasets."""
with tf.variable_scope(scope):
aux_logits = tf.identity(net)
with tf.variable_scope('aux_logits'):
aux_logits = slim.avg_pool2d(
aux_logits, [5, 5], stride=3, padding='VALID')
aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0')
aux_logits = tf.nn.relu(aux_logits)
# Shape of feature map before the final layer.
shape = aux_logits.shape
if hparams.data_format == 'NHWC':
shape = shape[1:3]
else:
shape = shape[2:4]
aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1')
aux_logits = tf.nn.relu(aux_logits)
aux_logits = contrib_layers.flatten(aux_logits)
aux_logits = slim.fully_connected(aux_logits, num_classes)
end_points['AuxLogits'] = aux_logits
示例2: model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, reuse=False, layer_norm=False):
"""As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("action_value"):
value_out = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
if layer_norm:
value_out = layer_norm_fn(value_out, relu=True)
else:
value_out = tf.nn.relu(value_out)
value_out = layers.fully_connected(value_out, num_outputs=num_actions, activation_fn=None)
return value_out
示例3: create_visual_encoder
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def create_visual_encoder(self, h_size, activation, num_layers):
"""
Builds a set of visual (CNN) encoders.
:param h_size: Hidden layer size.
:param activation: What type of activation function to use for layers.
:param num_layers: number of hidden layers to create.
:return: List of hidden layer tensors.
"""
conv1 = tf.layers.conv2d(self.visual_in[-1], 16, kernel_size=[8, 8], strides=[4, 4],
activation=tf.nn.elu)
conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2, 2],
activation=tf.nn.elu)
hidden = c_layers.flatten(conv2)
for j in range(num_layers):
hidden = tf.layers.dense(hidden, h_size, use_bias=False, activation=activation)
return hidden
示例4: encoder
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def encoder(input_tensor, output_size):
'''Create encoder network.
Args:
input_tensor: a batch of flattened images [batch_size, 28*28]
Returns:
A tensor that expresses the encoder network
'''
net = tf.reshape(input_tensor, [-1, 28, 28, 1])
net = layers.conv2d(net, 32, 5, stride=2)
net = layers.conv2d(net, 64, 5, stride=2)
net = layers.conv2d(net, 128, 5, stride=2, padding='VALID')
net = layers.dropout(net, keep_prob=0.9)
net = layers.flatten(net)
return layers.fully_connected(net, output_size, activation_fn=None)
示例5: decoder
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def decoder(input_tensor):
'''Create decoder network.
If input tensor is provided then decodes it, otherwise samples from
a sampled vector.
Args:
input_tensor: a batch of vectors to decode
Returns:
A tensor that expresses the decoder network
'''
net = tf.expand_dims(input_tensor, 1)
net = tf.expand_dims(net, 1)
net = layers.conv2d_transpose(net, 128, 3, padding='VALID')
net = layers.conv2d_transpose(net, 64, 5, padding='VALID')
net = layers.conv2d_transpose(net, 32, 5, stride=2)
net = layers.conv2d_transpose(
net, 1, 5, stride=2, activation_fn=tf.nn.sigmoid)
net = layers.flatten(net)
return net
示例6: _block_output
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def _block_output(net, endpoints, num_classes, dropout_keep_prob=0.5):
with tf.variable_scope('Output'):
net = layers.flatten(net, scope='Flatten')
# 7 x 7 x 512
net = layers.fully_connected(net, 4096, scope='Fc1')
net = endpoints['Output/Fc1'] = layers.dropout(net, dropout_keep_prob, scope='Dropout1')
# 1 x 1 x 4096
net = layers.fully_connected(net, 4096, scope='Fc2')
net = endpoints['Output/Fc2'] = layers.dropout(net, dropout_keep_prob, scope='Dropout2')
logits = layers.fully_connected(net, num_classes, activation_fn=None, scope='Logits')
# 1 x 1 x num_classes
endpoints['Logits'] = logits
return logits
示例7: model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, noisy=False, reuse=False):
"""As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
if noisy:
# Apply noisy network on fully connected layers
# ref: https://arxiv.org/abs/1706.10295
out = noisy_dense(out, name='noisy_fc1', size=512, activation_fn=tf.nn.relu)
out = noisy_dense(out, name='noisy_fc2', size=num_actions)
else:
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
示例8: model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, reuse=False, concat_softmax=False):
"""As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
if concat_softmax:
out = tf.nn.softmax(out)
return out
示例9: dueling_model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def dueling_model(img_in, num_actions, scope, reuse=False):
"""As described in https://arxiv.org/abs/1511.06581"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("state_value"):
state_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
state_score = layers.fully_connected(state_hidden, num_outputs=1, activation_fn=None)
with tf.variable_scope("action_value"):
actions_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
action_scores = layers.fully_connected(actions_hidden, num_outputs=num_actions, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores = action_scores - tf.expand_dims(action_scores_mean, 1)
return state_score + action_scores
示例10: create_visual_observation_encoder
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def create_visual_observation_encoder(self, image_input, h_size, activation, num_layers, scope, reuse):
"""
Builds a set of visual (CNN) encoders.
:param reuse: Whether to re-use the weights within the same scope.
:param scope: The scope of the graph within which to create the ops.
:param image_input: The placeholder for the image input to use.
:param h_size: Hidden layer size.
:param activation: What type of activation function to use for layers.
:param num_layers: number of hidden layers to create.
:return: List of hidden layer tensors.
"""
with tf.variable_scope(scope):
conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8], strides=[4, 4],
activation=tf.nn.elu, reuse=reuse, name="conv_1")
conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2, 2],
activation=tf.nn.elu, reuse=reuse, name="conv_2")
hidden = c_layers.flatten(conv2)
with tf.variable_scope(scope+'/'+'flat_encoding'):
hidden_flat = self.create_continuous_observation_encoder(hidden, h_size, activation,
num_layers, scope, reuse)
return hidden_flat
示例11: __call__
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def __call__(self, h):
# sequence -> [b, l, v]
_, l, v = h.get_shape().as_list()
h = tf.reshape(h, [-1, l, 1, v])
with tf.variable_scope("textmover", reuse=tf.AUTO_REUSE):
h0 = layers.convolution2d(
h, v, [4, 1], [2, 1],
activation_fn=tf.nn.softplus
)
h1 = layers.convolution2d(
h0, v, [4, 1], [1, 1],
activation_fn=tf.nn.softplus
)
h2 = layers.convolution2d(
h1, v, [4, 1], [2, 1],
activation_fn=tf.nn.softplus
)
h = layers.flatten(h2)
h = layers.fully_connected(
h, 1, activation_fn=tf.identity
)
return h
示例12: build_conv
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def build_conv(self):
self.inputs = tf.placeholder(tf.float32, [None, *self.state_size],
name='Input_state')
with tf.variable_scope('Convolutional_Layers'):
self.conv1 = slim.conv2d(activation_fn=tf.nn.relu,
inputs=self.inputs,
num_outputs=16,
kernel_size=[8, 8],
stride=[4, 4],
padding='VALID')
self.conv2 = slim.conv2d(activation_fn=tf.nn.relu,
inputs=self.conv1,
num_outputs=32,
kernel_size=[4, 4],
stride=[2, 2],
padding='VALID')
# Flatten the output
flat_conv2 = flatten(self.conv2)
self.hidden = slim.fully_connected(flat_conv2, 256,
activation_fn=tf.nn.relu)
return self.inputs
示例13: model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def model(img_in, num_actions, scope, noisy=False, reuse=False,
concat_softmax=False):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8,
stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4,
stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3,
stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
if noisy:
# Apply noisy network on fully connected layers
# ref: https://arxiv.org/abs/1706.10295
out = noisy_dense(out, name='noisy_fc1', size=512,
activation_fn=tf.nn.relu)
out = noisy_dense(out, name='noisy_fc2', size=num_actions)
else:
out = layers.fully_connected(out, num_outputs=512,
activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions,
activation_fn=None)
# V: Softmax - inspired by deep-rl-attack #
if concat_softmax:
out = tf.nn.softmax(out)
return out
示例14: atari_model
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def atari_model(img_in, num_actions, scope, reuse=False):
# as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
示例15: _cnn_to_mlp
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import flatten [as 別名]
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = inpt
with tf.variable_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
out = layers.convolution2d(out,
num_outputs=num_outputs,
kernel_size=kernel_size,
stride=stride,
activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("action_value"):
action_out = conv_out
for hidden in hiddens:
action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
action_out = layers.layer_norm(action_out, center=True, scale=True)
action_out = tf.nn.relu(action_out)
action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)
if dueling:
with tf.variable_scope("state_value"):
state_out = conv_out
for hidden in hiddens:
state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
state_out = layers.layer_norm(state_out, center=True, scale=True)
state_out = tf.nn.relu(state_out)
state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
q_out = state_score + action_scores_centered
else:
q_out = action_scores
return q_out