當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.dropout方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.dropout方法的具體用法?Python layers.dropout怎麽用?Python layers.dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.dropout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: encoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def encoder(input_tensor, output_size):
    '''Create encoder network.

    Args:
        input_tensor: a batch of flattened images [batch_size, 28*28]

    Returns:
        A tensor that expresses the encoder network
    '''
    net = tf.reshape(input_tensor, [-1, 28, 28, 1])
    net = layers.conv2d(net, 32, 5, stride=2)
    net = layers.conv2d(net, 64, 5, stride=2)
    net = layers.conv2d(net, 128, 5, stride=2, padding='VALID')
    net = layers.dropout(net, keep_prob=0.9)
    net = layers.flatten(net)
    return layers.fully_connected(net, output_size, activation_fn=None) 
開發者ID:ikostrikov,項目名稱:TensorFlow-VAE-GAN-DRAW,代碼行數:18,代碼來源:utils.py

示例2: _block_output

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def _block_output(net, endpoints, num_classes, dropout_keep_prob=0.5):
    with tf.variable_scope('Output'):
        net = layers.flatten(net, scope='Flatten')

        # 7 x 7 x 512
        net = layers.fully_connected(net, 4096, scope='Fc1')
        net = endpoints['Output/Fc1'] = layers.dropout(net, dropout_keep_prob, scope='Dropout1')

        # 1 x 1 x 4096
        net = layers.fully_connected(net, 4096, scope='Fc2')
        net = endpoints['Output/Fc2'] = layers.dropout(net, dropout_keep_prob, scope='Dropout2')

        logits = layers.fully_connected(net, num_classes, activation_fn=None, scope='Logits')
        # 1 x 1 x num_classes
        endpoints['Logits'] = logits
    return logits 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:18,代碼來源:build_vgg.py

示例3: get_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def get_arg_scope(is_training):
        weight_decay_l2 = 0.1
        batch_norm_decay = 0.999
        batch_norm_epsilon = 0.0001

        with slim.arg_scope([slim.conv2d, slim.fully_connected, layers.separable_convolution2d],
                            weights_regularizer = slim.l2_regularizer(weight_decay_l2),
                            biases_regularizer = slim.l2_regularizer(weight_decay_l2),
                            weights_initializer = layers.variance_scaling_initializer(),
                            ):
            batch_norm_params = {
                'decay': batch_norm_decay,
                'epsilon': batch_norm_epsilon
            }
            with slim.arg_scope([slim.batch_norm, slim.dropout],
                                is_training = is_training):
                with slim.arg_scope([slim.batch_norm],
                                    **batch_norm_params):
                    with slim.arg_scope([slim.conv2d, layers.separable_convolution2d, layers.fully_connected],
                                        activation_fn = tf.nn.elu,
                                        normalizer_fn = slim.batch_norm,
                                        normalizer_params = batch_norm_params) as scope:
                        return scope 
開發者ID:marian-margeta,項目名稱:gait-recognition,代碼行數:25,代碼來源:gait_nn.py

示例4: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def forward(self, images, num_classes=None, is_training=True):
    assert num_classes is not None, 'num_classes must be given when is_training=True'
    # Forward
    features, _ = self.backbone(images, is_training=is_training)
    # Logits
    with tf.variable_scope('classifier'):
      features_drop = layers.dropout(features, keep_prob=0.5, is_training=is_training)
      logit = layers.fully_connected(features_drop, num_classes, activation_fn=None, 
                                     weights_initializer=tf.random_normal_initializer(stddev=0.001),
                                     weights_regularizer=layers.l2_regularizer(self.weight_decay),
                                     biases_initializer=None,
                                     scope='fc_classifier')
    logits = {}
    logits['logits'] = logit

    return logits 
開發者ID:medivhna,項目名稱:TF_Face_Toolbox,代碼行數:18,代碼來源:resnet.py

示例5: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def forward(self, images, num_classes=None, is_training=True):
    # Forward
    features, end_points = self.backbone(images, is_training=is_training)
    # Logits
    if is_training:
      assert num_classes is not None, 'num_classes must be given when is_training=True'
      with tf.variable_scope('classifier'):
        features_drop = layers.dropout(features, keep_prob=0.5, is_training=is_training)
        logit = layers.fully_connected(features_drop, num_classes, activation_fn=None, 
                                       weights_initializer=tf.random_normal_initializer(stddev=0.001),
                                       weights_regularizer=layers.l2_regularizer(self.weight_decay),
                                       biases_initializer=None,
                                       scope='fc_classifier')
      logits = {}
      logits['logits'] = logit
      logits['features'] = features
      return logits
    else:
      # for _, var in end_points.items():
      # 	print(var)
      return features 
開發者ID:medivhna,項目名稱:TF_Face_Toolbox,代碼行數:23,代碼來源:shufflenet_v2.py

示例6: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def forward(self, decoder_hidden, dec_in, decoder_category, reuse=False, trainable=True, is_training=True):
        with tf.variable_scope(self.name_scope) as vs:
            if(reuse):
                vs.reuse_variables()
            lrelu = VAE.lrelu

            dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training)
            
            
            y = tf.concat([decoder_hidden, dec_in_enc], 1)

            h0 = tcl.fully_connected(y, 512, scope="fc3", activation_fn=lrelu, weights_regularizer=tcl.l2_regularizer(self.re_term))

            h0 = tcl.dropout(h0, 0.5, is_training=is_training)

        
            
            h0 = tcl.fully_connected(h0, 54, scope="fc4", activation_fn=None,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term),)

            h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3)

            
            return h0 
開發者ID:chaneyddtt,項目名稱:Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,代碼行數:26,代碼來源:humanEncoder.py

示例7: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def forward(self, dec_in, reuse=False, trainable=True, is_training=True):
        with tf.variable_scope(self.name_scope) as vs:
            if (reuse):
                vs.reuse_variables()
            lrelu = VAE.lrelu

            dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training)


            h0 = tcl.fully_connected(dec_in_enc, 512, scope="fc3", activation_fn=lrelu,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term))

            h0 = tcl.dropout(h0, 0.5, is_training=is_training)

            h0 = tcl.fully_connected(h0, 54, scope="fc4", activation_fn=None,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term), )

            h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3)

            return h0 
開發者ID:chaneyddtt,項目名稱:Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,代碼行數:22,代碼來源:humanEncoder_ablation.py

示例8: forward

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def forward(self, decoder_hidden, dec_in, decoder_category, reuse=False, trainable=True, is_training=True):
        with tf.variable_scope(self.name_scope) as vs:
            if (reuse):
                vs.reuse_variables()
            lrelu = VAE.lrelu

            dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training)

            y = tf.concat([decoder_hidden, dec_in_enc], 1)

            h0 = tcl.fully_connected(y, 512, scope="fc3", activation_fn=lrelu,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term))

            h0 = tcl.dropout(h0, 0.5, is_training=is_training)

            h0 = tcl.fully_connected(h0, 70, scope="fc4", activation_fn=None,
                                     weights_regularizer=tcl.l2_regularizer(self.re_term), )

            h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3)

            return h0 
開發者ID:chaneyddtt,項目名稱:Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,代碼行數:23,代碼來源:humanEncoder_cmu.py

示例9: feature_extractor

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def feature_extractor(net, output_dim, cfg):
  net = net - 0.5
  min_feature_map_size = 4
  assert output_dim % (
      min_feature_map_size**2) == 0, 'output dim=%d' % output_dim
  size = int(net.get_shape()[2])
  print('Agent CNN:')
  channels = cfg.base_channels
  print('    ', str(net.get_shape()))
  size /= 2
  net = ly.conv2d(
      net, num_outputs=channels, kernel_size=4, stride=2, activation_fn=lrelu)
  print('    ', str(net.get_shape()))
  while size > min_feature_map_size:
    if size == min_feature_map_size * 2:
      channels = output_dim / (min_feature_map_size**2)
    else:
      channels *= 2
    assert size % 2 == 0
    size /= 2
    net = ly.conv2d(
        net, num_outputs=channels, kernel_size=4, stride=2, activation_fn=lrelu)
    print('    ', str(net.get_shape()))
  print('before fc: ', net.get_shape()[1])
  net = tf.reshape(net, [-1, output_dim])
  net = tf.nn.dropout(net, cfg.dropout_keep_prob)
  return net


# Output: float \in [0, 1] 
開發者ID:yuanming-hu,項目名稱:exposure,代碼行數:32,代碼來源:agent.py

示例10: _build_vgg16

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def _build_vgg16(
        inputs,
        num_classes=1000,
        dropout_keep_prob=0.5,
        is_training=True,
        scope=''):
    """Blah"""

    endpoints = {}
    with tf.name_scope(scope, 'vgg16', [inputs]):
        with arg_scope(
                [layers.batch_norm, layers.dropout], is_training=is_training):
            with arg_scope(
                    [layers.conv2d, layers.max_pool2d], 
                    stride=1,
                    padding='SAME'):

                net = _block_a(inputs, endpoints, d=64, scope='Scale1')
                net = _block_a(net, endpoints, d=128, scope='Scale2')
                net = _block_b(net, endpoints, d=256, scope='Scale3')
                net = _block_b(net, endpoints, d=512, scope='Scale4')
                net = _block_b(net, endpoints, d=512, scope='Scale5')
                logits = _block_output(net, endpoints, num_classes, dropout_keep_prob)

                endpoints['Predictions'] = tf.nn.softmax(logits, name='Predictions')
                return logits, endpoints 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:28,代碼來源:build_vgg.py

示例11: _build_vgg19

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def _build_vgg19(
        inputs,
        num_classes=1000,
        dropout_keep_prob=0.5,
        is_training=True,
        scope=''):
    """Blah"""

    endpoints = {}
    with tf.name_scope(scope, 'vgg19', [inputs]):
        with arg_scope(
                [layers.batch_norm, layers.dropout], is_training=is_training):
            with arg_scope(
                    [layers.conv2d, layers.max_pool2d],
                    stride=1,
                    padding='SAME'):

                net = _block_a(inputs, endpoints, d=64, scope='Scale1')
                net = _block_a(net, endpoints, d=128, scope='Scale2')
                net = _block_c(net, endpoints, d=256, scope='Scale3')
                net = _block_c(net, endpoints, d=512, scope='Scale4')
                net = _block_c(net, endpoints, d=512, scope='Scale5')
                logits = _block_output(net, endpoints, num_classes, dropout_keep_prob)

                endpoints['Predictions'] = tf.nn.softmax(logits, name='Predictions')
                return logits, endpoints 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:28,代碼來源:build_vgg.py

示例12: _block_output

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def _block_output(net, endpoints, num_classes=1000, dropout_keep_prob=0.5, scope='Output'):
    with tf.variable_scope(scope):
        # 8 x 8 x 1536
        shape = net.get_shape()
        net = layers.avg_pool2d(net, shape[1:3], padding='VALID', scope='Pool1_Global')
        endpoints['Output/Pool1'] = net
        # 1 x 1 x 1536
        net = layers.dropout(net, dropout_keep_prob)
        net = layers.flatten(net)
        # 1536
        net = layers.fully_connected(net, num_classes, activation_fn=None, scope='Logits')
        # num classes
        endpoints['Logits'] = net
    return net 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:16,代碼來源:build_inception_v4.py

示例13: my_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def my_model(features, target):
  """DNN with three hidden layers, and dropout of 0.1 probability.

  Note: If you want to run this example with multiple GPUs, Cuda Toolkit 7.0 and
  CUDNN 6.5 V2 from NVIDIA need to be installed beforehand.

  Args:
    features: `Tensor` of input features.
    target: `Tensor` of targets.

  Returns:
    Tuple of predictions, loss and training op.
  """
  # Convert the target to a one-hot tensor of shape (length of features, 3) and
  # with a on-value of 1 for each one-hot vector of length 3.
  target = tf.one_hot(target, 3, 1, 0)

  # Create three fully connected layers respectively of size 10, 20, and 10 with
  # each layer having a dropout probability of 0.1.
  normalizer_fn = layers.dropout
  normalizer_params = {'keep_prob': 0.5}
  with tf.device('/gpu:1'):
    features = layers.stack(features, layers.fully_connected, [10, 20, 10],
                            normalizer_fn=normalizer_fn,
                            normalizer_params=normalizer_params)

  with tf.device('/gpu:2'):
    # Compute logits (1 per class) and compute loss.
    logits = layers.fully_connected(features, 3, activation_fn=None)
    loss = tf.contrib.losses.softmax_cross_entropy(logits, target)

    # Create a tensor for training op.
    train_op = tf.contrib.layers.optimize_loss(
        loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad',
        learning_rate=0.1)

  return ({
      'class': tf.argmax(logits, 1),
      'prob': tf.nn.softmax(logits)}, loss, train_op) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:41,代碼來源:multiple_gpu.py

示例14: my_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def my_model(features, target):
  """DNN with three hidden layers, and dropout of 0.1 probability."""
  # Convert the target to a one-hot tensor of shape (length of features, 3) and
  # with a on-value of 1 for each one-hot vector of length 3.
  target = tf.one_hot(target, 3, 1, 0)

  # Create three fully connected layers respectively of size 10, 20, and 10 with
  # each layer having a dropout probability of 0.1.
  normalizer_fn = layers.dropout
  normalizer_params = {'keep_prob': 0.9}
  features = layers.stack(features, layers.fully_connected, [10, 20, 10],
                          normalizer_fn=normalizer_fn,
                          normalizer_params=normalizer_params)

  # Compute logits (1 per class) and compute loss.
  logits = layers.fully_connected(features, 3, activation_fn=None)
  loss = tf.contrib.losses.softmax_cross_entropy(logits, target)

  # Create a tensor for training op.
  train_op = tf.contrib.layers.optimize_loss(
      loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad',
      learning_rate=0.1)

  return ({
      'class': tf.argmax(logits, 1),
      'prob': tf.nn.softmax(logits)}, loss, train_op) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:iris_custom_model.py

示例15: conv_model

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import dropout [as 別名]
def conv_model(feature, target, mode):
  """2-layer convolution model."""
  # Convert the target to a one-hot tensor of shape (batch_size, 10) and
  # with a on-value of 1 for each one-hot vector of length 10.
  target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0)

  # Reshape feature to 4d tensor with 2nd and 3rd dimensions being
  # image width and height final dimension being the number of color channels.
  feature = tf.reshape(feature, [-1, 28, 28, 1])

  # First conv layer will compute 32 features for each 5x5 patch
  with tf.variable_scope('conv_layer1'):
    h_conv1 = layers.convolution(feature, 32, kernel_size=[5, 5],
                                 activation_fn=tf.nn.relu)
    h_pool1 = max_pool_2x2(h_conv1)

  # Second conv layer will compute 64 features for each 5x5 patch.
  with tf.variable_scope('conv_layer2'):
    h_conv2 = layers.convolution(h_pool1, 64, kernel_size=[5, 5],
                                 activation_fn=tf.nn.relu)
    h_pool2 = max_pool_2x2(h_conv2)
    # reshape tensor into a batch of vectors
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])

  # Densely connected layer with 1024 neurons.
  h_fc1 = layers.dropout(
      layers.fully_connected(
          h_pool2_flat, 1024, activation_fn=tf.nn.relu), keep_prob=0.5,
      is_training=mode == tf.contrib.learn.ModeKeys.TRAIN)

  # Compute logits (1 per class) and compute loss.
  logits = layers.fully_connected(h_fc1, 10, activation_fn=None)
  loss = tf.contrib.losses.softmax_cross_entropy(logits, target)

  # Create a tensor for training op.
  train_op = layers.optimize_loss(
      loss, tf.contrib.framework.get_global_step(), optimizer='SGD',
      learning_rate=0.001)

  return tf.argmax(logits, 1), loss, train_op 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:42,代碼來源:mnist.py


注:本文中的tensorflow.contrib.layers.dropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。