當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.conv2d_transpose方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.conv2d_transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.conv2d_transpose方法的具體用法?Python layers.conv2d_transpose怎麽用?Python layers.conv2d_transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.conv2d_transpose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: decoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def decoder(input_tensor):
    '''Create decoder network.

        If input tensor is provided then decodes it, otherwise samples from
        a sampled vector.
    Args:
        input_tensor: a batch of vectors to decode

    Returns:
        A tensor that expresses the decoder network
    '''

    net = tf.expand_dims(input_tensor, 1)
    net = tf.expand_dims(net, 1)
    net = layers.conv2d_transpose(net, 128, 3, padding='VALID')
    net = layers.conv2d_transpose(net, 64, 5, padding='VALID')
    net = layers.conv2d_transpose(net, 32, 5, stride=2)
    net = layers.conv2d_transpose(
        net, 1, 5, stride=2, activation_fn=tf.nn.sigmoid)
    net = layers.flatten(net)
    return net 
開發者ID:ikostrikov,項目名稱:TensorFlow-VAE-GAN-DRAW,代碼行數:23,代碼來源:utils.py

示例2: deconv2d

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def deconv2d(input, deconv_info, is_train, name="deconv2d", info=False,
             stddev=0.01, activation_fn=tf.nn.relu, norm='batch'):
    with tf.variable_scope(name):
        output_shape = deconv_info[0]
        k = deconv_info[1]
        s = deconv_info[2]
        _ = layers.conv2d_transpose(
            input,
            num_outputs=output_shape,
            weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
            biases_initializer=tf.zeros_initializer(),
            kernel_size=[k, k], stride=[s, s], padding='SAME'
        )
        _ = bn_act(_, is_train, norm=norm, activation_fn=activation_fn)
        if info: log.info('{} {}'.format(name, _.get_shape().as_list()))
    return _ 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:18,代碼來源:ops.py

示例3: __call__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def __call__(self, i):
		with tf.variable_scope(self.name):
			if self.reuse:
				tf.get_variable_scope().reuse_variables()
			else:
				assert tf.get_variable_scope().reuse is False
				self.reuse = True
			g = tcl.fully_connected(i, self.size * self.size * 1024, activation_fn=tf.nn.relu, 
									normalizer_fn=tcl.batch_norm)
			g = tf.reshape(g, (-1, self.size, self.size, 1024))  # size
			g = tcl.conv2d_transpose(g, 512, 3, stride=2, # size*2
									activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
			g = tcl.conv2d_transpose(g, 256, 3, stride=2, # size*4
									activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
			g = tcl.conv2d_transpose(g, 128, 3, stride=2, # size*8
									activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
			
			g = tcl.conv2d_transpose(g, self.channel, 3, stride=2, # size*16
										activation_fn=tf.nn.sigmoid, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
			return g

		return x 
開發者ID:yanzhicong,項目名稱:VAE-GAN,代碼行數:24,代碼來源:generator_conv.py

示例4: deconv2d

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def deconv2d(input, deconv_info, is_train, name="deconv2d", info=False,
             stddev=0.01, activation_fn=tf.nn.relu, batch_norm=True):
    with tf.variable_scope(name):
        output_shape = deconv_info[0]
        k = deconv_info[1]
        s = deconv_info[2]
        _ = layers.conv2d_transpose(
            input,
            num_outputs=output_shape,
            weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
            biases_initializer=tf.zeros_initializer(),
            kernel_size=[k, k], stride=[s, s], padding='SAME'
        )
        _ = bn_act(_, is_train, batch_norm=batch_norm, activation_fn=activation_fn)
        if info: log.info('{} {}'.format(name, _))
    return _ 
開發者ID:shaohua0116,項目名稱:demo2program,代碼行數:18,代碼來源:ops.py

示例5: deconv2d

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def deconv2d(input, deconv_info, is_train, name="deconv2d", stddev=0.02,activation_fn='relu'):
    with tf.variable_scope(name):
        output_shape = deconv_info[0]
        k = deconv_info[1]
        s = deconv_info[2]
        deconv = layers.conv2d_transpose(input,
            num_outputs=output_shape,
            weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
            biases_initializer=tf.zeros_initializer(),
            kernel_size=[k, k], stride=[s, s], padding='VALID')
        if activation_fn == 'relu':
            deconv = tf.nn.relu(deconv)
            bn = tf.contrib.layers.batch_norm(deconv, center=True, scale=True, 
                decay=0.9, is_training=is_train, updates_collections=None)
        elif activation_fn == 'tanh':
            deconv = tf.nn.tanh(deconv)
        return deconv 
開發者ID:shaohua0116,項目名稱:DCGAN-Tensorflow,代碼行數:19,代碼來源:ops.py

示例6: autoencoder

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def autoencoder(inputs):
    # encoder
    # 32 x 32 x 1   ->  16 x 16 x 32
    # 16 x 16 x 32  ->  8 x 8 x 16
    # 8 x 8 x 16    ->  2 x 2 x 8
    net = lays.conv2d(inputs, 32, [5, 5], stride=2, padding='SAME')
    net = lays.conv2d(net, 16, [5, 5], stride=2, padding='SAME')
    net = lays.conv2d(net, 8, [5, 5], stride=4, padding='SAME')
    # decoder
    # 2 x 2 x 8    ->  8 x 8 x 16
    # 8 x 8 x 16   ->  16 x 16 x 32
    # 16 x 16 x 32  ->  32 x 32 x 1
    net = lays.conv2d_transpose(net, 16, [5, 5], stride=4, padding='SAME')
    net = lays.conv2d_transpose(net, 32, [5, 5], stride=2, padding='SAME')
    net = lays.conv2d_transpose(net, 1, [5, 5], stride=2, padding='SAME', activation_fn=tf.nn.tanh)
    return net

# read MNIST dataset 
開發者ID:astorfi,項目名稱:TensorFlow-World,代碼行數:20,代碼來源:autoencoder.py

示例7: deconv2d

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def deconv2d(input, output_shape, is_train, info=False, k=3, s=2, stddev=0.01, 
             activation_fn=tf.nn.relu, norm='batch', name='deconv2d'):
    with tf.variable_scope(name):
        _ = layers.conv2d_transpose(
            input,
            num_outputs=output_shape,
            weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
            biases_initializer=tf.zeros_initializer(),
            activation_fn=None,
            kernel_size=[k, k], stride=[s, s], padding='SAME'
        )
        _ = norm_and_act(_, is_train, norm=norm, activation_fn=activation_fn)
        if info: print_info(name, _.get_shape().as_list(), activation_fn)
    return _ 
開發者ID:clvrai,項目名稱:SSGAN-Tensorflow,代碼行數:16,代碼來源:ops.py

示例8: deconv2d

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def deconv2d(input, deconv_info, is_train, name="deconv2d",
             stddev=0.02, activation_fn=tf.nn.relu, batch_norm=True):
    with tf.variable_scope(name):
        output_shape = deconv_info[0]
        k = deconv_info[1]
        s = deconv_info[2]
        _ = layers.conv2d_transpose(
            input,
            num_outputs=output_shape,
            weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
            biases_initializer=tf.zeros_initializer(),
            kernel_size=[k, k], stride=[s, s], padding='SAME'
        )

    return bn_act(_, is_train, batch_norm=batch_norm, activation_fn=activation_fn) 
開發者ID:clvrai,項目名稱:Generative-Latent-Optimization-Tensorflow,代碼行數:17,代碼來源:ops.py

示例9: test_get_input_activation2

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def test_get_input_activation2(self, rank, fn, op_name):
    g = tf.get_default_graph()
    inputs = tf.zeros([6] * rank)
    with arg_scope([
        layers.conv2d, layers.conv2d_transpose, layers.separable_conv2d,
        layers.conv3d
    ],
                   scope='test_layer'):
      _ = fn(inputs)
    for op in g.get_operations():
      print(op.name)
    self.assertEqual(
        inputs,
        cc.get_input_activation(
            g.get_operation_by_name('test_layer/' + op_name))) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:17,代碼來源:cost_calculator_test.py

示例10: testOpAssumptions

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def testOpAssumptions(self):
    # Verify that op assumptions are true.  For example, verify that specific
    # inputs are at expected indices.
    conv_transpose = layers.conv2d_transpose(
        self.batch_norm_op.outputs[0], num_outputs=8, kernel_size=3,
        scope='conv_transpose')
    layers.separable_conv2d(
        conv_transpose, num_outputs=9, kernel_size=3, scope='dwise_conv')
    layers.fully_connected(tf.zeros([1, 7]), 10, scope='fc')

    g = tf.get_default_graph()

    # Verify that FusedBatchNormV3 has gamma as inputs[1].
    self.assertEqual('conv1/BatchNorm/gamma/read:0',
                     self.batch_norm_op.inputs[1].name)

    # Verify that Conv2D has weights at expected index.
    index = op_handler_util.WEIGHTS_INDEX_DICT[self.conv_op.type]
    self.assertEqual('conv1/weights/read:0',
                     self.conv_op.inputs[index].name)

    # Verify that Conv2DBackpropInput has weights at expected index.
    conv_transpose_op = g.get_operation_by_name(
        'conv_transpose/conv2d_transpose')
    index = op_handler_util.WEIGHTS_INDEX_DICT[conv_transpose_op.type]
    self.assertEqual('conv_transpose/weights/read:0',
                     conv_transpose_op.inputs[index].name)

    # Verify that DepthwiseConv2dNative has weights at expected index.
    depthwise_conv_op = g.get_operation_by_name(
        'dwise_conv/separable_conv2d/depthwise')
    index = op_handler_util.WEIGHTS_INDEX_DICT[depthwise_conv_op.type]
    self.assertEqual('dwise_conv/depthwise_weights/read:0',
                     depthwise_conv_op.inputs[index].name)

    # Verify that MatMul has weights at expected index.
    matmul_op = g.get_operation_by_name('fc/MatMul')
    index = op_handler_util.WEIGHTS_INDEX_DICT[matmul_op.type]
    self.assertEqual('fc/weights/read:0',
                     matmul_op.inputs[index].name) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:42,代碼來源:op_handler_util_test.py

示例11: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def __init__(self, hidden_size, batch_size, learning_rate):
        self.input_tensor = tf.placeholder(tf.float32, [None, 28 * 28])

        with arg_scope([layers.conv2d, layers.conv2d_transpose],
                       activation_fn=concat_elu,
                       normalizer_fn=layers.batch_norm,
                       normalizer_params={'scale': True}):
            with tf.variable_scope("model"):
                D1 = discriminator(self.input_tensor)  # positive examples
                D_params_num = len(tf.trainable_variables())
                G = decoder(tf.random_normal([batch_size, hidden_size]))
                self.sampled_tensor = G

            with tf.variable_scope("model", reuse=True):
                D2 = discriminator(G)  # generated examples

        D_loss = self.__get_discrinator_loss(D1, D2)
        G_loss = self.__get_generator_loss(D2)

        params = tf.trainable_variables()
        D_params = params[:D_params_num]
        G_params = params[D_params_num:]
        #    train_discrimator = optimizer.minimize(loss=D_loss, var_list=D_params)
        # train_generator = optimizer.minimize(loss=G_loss, var_list=G_params)
        global_step = tf.contrib.framework.get_or_create_global_step()
        self.train_discrimator = layers.optimize_loss(
            D_loss, global_step, learning_rate / 10, 'Adam', variables=D_params, update_ops=[])
        self.train_generator = layers.optimize_loss(
            G_loss, global_step, learning_rate, 'Adam', variables=G_params, update_ops=[])

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer()) 
開發者ID:ikostrikov,項目名稱:TensorFlow-VAE-GAN-DRAW,代碼行數:34,代碼來源:gan.py

示例12: __init__

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def __init__(self, hidden_size, batch_size, learning_rate):
        self.input_tensor = tf.placeholder(
            tf.float32, [None, 28 * 28])

        with arg_scope([layers.conv2d, layers.conv2d_transpose],
                       activation_fn=tf.nn.elu,
                       normalizer_fn=layers.batch_norm,
                       normalizer_params={'scale': True}):
            with tf.variable_scope("model") as scope:
                encoded = encoder(self.input_tensor, hidden_size * 2)

                mean = encoded[:, :hidden_size]
                stddev = tf.sqrt(tf.exp(encoded[:, hidden_size:]))

                epsilon = tf.random_normal([tf.shape(mean)[0], hidden_size])
                input_sample = mean + epsilon * stddev

                output_tensor = decoder(input_sample)

            with tf.variable_scope("model", reuse=True) as scope:
                self.sampled_tensor = decoder(tf.random_normal(
                    [batch_size, hidden_size]))

        vae_loss = self.__get_vae_cost(mean, stddev)
        rec_loss = self.__get_reconstruction_cost(
            output_tensor, self.input_tensor)

        loss = vae_loss + rec_loss
        self.train = layers.optimize_loss(loss, tf.contrib.framework.get_or_create_global_step(
        ), learning_rate=learning_rate, optimizer='Adam', update_ops=[])

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer()) 
開發者ID:ikostrikov,項目名稱:TensorFlow-VAE-GAN-DRAW,代碼行數:35,代碼來源:vae.py

示例13: test_default_arg_scope_has_conv2d_transpose_op

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def test_default_arg_scope_has_conv2d_transpose_op(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    self.assertTrue(self._get_scope_key(layers.conv2d_transpose) in scope) 
開發者ID:bgshih,項目名稱:aster,代碼行數:17,代碼來源:hyperparams_builder_test.py

示例14: deconv2d

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def deconv2d(input, output_shape, is_train, info=False, k=3, s=2, stddev=0.01,
             activation_fn=tf.nn.relu, norm='batch', name='deconv2d'):
    with tf.variable_scope(name):
        _ = layers.conv2d_transpose(
            input,
            num_outputs=output_shape,
            weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
            biases_initializer=tf.zeros_initializer(),
            activation_fn=None,
            kernel_size=[k, k], stride=[s, s], padding='SAME'
        )
        _ = norm_and_act(_, is_train, norm=norm, activation_fn=activation_fn)
        if info: print_info(name, _.get_shape().as_list(), activation_fn)
    return _ 
開發者ID:shaohua0116,項目名稱:WGAN-GP-TensorFlow,代碼行數:16,代碼來源:ops.py

示例15: generator

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d_transpose [as 別名]
def generator(z):
    with tf.variable_scope('generator'):
        z = layers.fully_connected(z, num_outputs=4096)
        z = tf.reshape(z, [-1, 4, 4, 256])

        z = layers.conv2d_transpose(z, num_outputs=128, kernel_size=5, stride=2)
        z = layers.conv2d_transpose(z, num_outputs=64, kernel_size=5, stride=2)
        z = layers.conv2d_transpose(z, num_outputs=1, kernel_size=5, stride=2,
                                    activation_fn=tf.nn.sigmoid)
        return z[:, 2:-2, 2:-2, :] 
開發者ID:adler-j,項目名稱:minimal_wgan,代碼行數:12,代碼來源:wgan_mnist.py


注:本文中的tensorflow.contrib.layers.conv2d_transpose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。