當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.conv2d方法代碼示例

本文整理匯總了Python中tensorflow.contrib.layers.conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.conv2d方法的具體用法?Python layers.conv2d怎麽用?Python layers.conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.conv2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: vgg_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def vgg_arg_scope(weight_decay=0.0005):
  """Defines the VGG arg scope.

  Args:
    weight_decay: The l2 regularization coefficient.

  Returns:
    An arg_scope.
  """
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      biases_initializer=init_ops.zeros_initializer()):
    with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
      return arg_sc 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:18,代碼來源:vgg16.py

示例2: darkconv

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def darkconv(*args, **kwargs):
    scope = kwargs.pop('scope', None)
    onlyconv = kwargs.pop('onlyconv', False)
    with tf.variable_scope(scope):
        conv_kwargs = {
            'padding': 'SAME',
            'activation_fn': None,
            'weights_initializer': variance_scaling_initializer(1.53846),
            'weights_regularizer': l2(5e-4),
            'biases_initializer': None,
            'scope': 'conv'}
        if onlyconv:
            conv_kwargs.pop('biases_initializer')
        with arg_scope([conv2d], **conv_kwargs):
            x = conv2d(*args, **kwargs)
            if onlyconv: return x
            x = batch_norm(x, decay=0.99, center=False, scale=True,
                           epsilon=1e-5, scope='bn')
            x = bias_add(x, scope='bias')
            x = leaky_relu(x, alpha=0.1, name='lrelu')
            return x 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:23,代碼來源:layers.py

示例3: resBlock

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def resBlock(x, num_outputs, kernel_size=4, stride=1, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm,
    scope=None):
  assert num_outputs % 2 == 0  # num_outputs must be divided by channel_factor(2 here)
  with tf.variable_scope(scope, 'resBlock'):
    shortcut = x
    if stride != 1 or x.get_shape()[3] != num_outputs:
      shortcut = tcl.conv2d(shortcut, num_outputs, kernel_size=1, stride=stride,
        activation_fn=None, normalizer_fn=None, scope='shortcut')
    x = tcl.conv2d(x, num_outputs / 2, kernel_size=1, stride=1, padding='SAME')
    x = tcl.conv2d(x, num_outputs / 2, kernel_size=kernel_size, stride=stride, padding='SAME')
    x = tcl.conv2d(x, num_outputs, kernel_size=1, stride=1, activation_fn=None, padding='SAME', normalizer_fn=None)

    x += shortcut
    x = normalizer_fn(x)
    x = activation_fn(x)
  return x 
開發者ID:joseph-zhong,項目名稱:LipReading,代碼行數:18,代碼來源:prnet.py

示例4: conv2d

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def conv2d(self, *args, **kwargs):
    """Masks num_outputs from the function pointed to by 'conv2d'.

    The object's parameterization has precedence over the given NUM_OUTPUTS
    argument. The resolution of the op names uses
    tf.contrib.framework.get_name_scope() and kwargs['scope'].

    Args:
      *args: Arguments for the operation.
      **kwargs: Key arguments for the operation.

    Returns:
      The result of the application of the function_dict['conv2d'] to the given
      'inputs', '*args' and '**kwargs' while possibly overriding NUM_OUTPUTS
      according the parameterization.

    Raises:
      ValueError: If kwargs does not contain a key named 'scope'.
    """
    fn, suffix = self._get_function_and_suffix('conv2d')
    return self._mask(fn, suffix, *args, **kwargs) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:23,代碼來源:configurable_ops.py

示例5: testComplexNet

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def testComplexNet(self):
    parameterization = {'Branch0/Conv_1x1/Conv2D': 13, 'Conv3_1x1/Conv2D': 77}
    decorator = ops.ConfigurableOps(parameterization=parameterization)

    def conv2d(inputs, num_outputs, kernel_size, scope):
      return decorator.conv2d(
          inputs, num_outputs=num_outputs, kernel_size=kernel_size, scope=scope)

    net = self.inputs

    with tf.variable_scope('Branch0'):
      branch_0 = conv2d(net, 1, 1, scope='Conv_1x1')
    with tf.variable_scope('Branch1'):
      branch_1 = conv2d(net, 2, 1, scope='Conv_1x1')
      out_2 = conv2d(branch_1, 3, 3, scope='Conv_3x3')
    net = conv2d(net, 1, 1, scope='Conv3_1x1')
    output = tf.concat([net, branch_0, branch_1, out_2], -1)
    expected_output_shape = self.inputs_shape
    expected_output_shape[-1] = 95
    self.assertEqual(expected_output_shape, output.shape.as_list())
    self.assertEqual(2, decorator.constructed_ops['Branch1/Conv_1x1/Conv2D'])
    self.assertEqual(13, decorator.constructed_ops['Branch0/Conv_1x1/Conv2D'])
    self.assertEqual(77, decorator.constructed_ops['Conv3_1x1/Conv2D'])
    self.assertEqual(3, decorator.constructed_ops['Branch1/Conv_3x3/Conv2D']) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:26,代碼來源:configurable_ops_test.py

示例6: testDifferentParameterization

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def testDifferentParameterization(self, parameterization,
                                    expected_first_shape, expected_conv2_shape):
    alternate_num_outputs = 7
    decorator = ops.ConfigurableOps(parameterization=parameterization)
    with arg_scope([layers.conv2d], padding='VALID'):
      first_out = decorator.conv2d(
          self.inputs,
          num_outputs=alternate_num_outputs,
          kernel_size=3,
          scope='first')
      conv2_out = decorator.conv2d(
          self.inputs,
          num_outputs=alternate_num_outputs,
          kernel_size=1,
          scope='second')
      self.assertAllEqual(expected_first_shape, first_out.shape.as_list())
      self.assertAllEqual(expected_conv2_shape, conv2_out.shape.as_list()) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:19,代碼來源:configurable_ops_test.py

示例7: testStrict_PartialParameterizationFails

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def testStrict_PartialParameterizationFails(self):
    partial_parameterization = {'first/Conv2D': 3}
    default_num_outputs = 7
    decorator = ops.ConfigurableOps(
        parameterization=partial_parameterization, fallback_rule='strict')
    decorator.conv2d(
        self.inputs,
        num_outputs=default_num_outputs,
        kernel_size=3,
        scope='first')
    with self.assertRaisesRegexp(
        KeyError, 'op_name \"second/Conv2D\" not found in parameterization'):
      decorator.conv2d(
          self.inputs,
          num_outputs=default_num_outputs,
          kernel_size=1,
          scope='second') 
開發者ID:google-research,項目名稱:morph-net,代碼行數:19,代碼來源:configurable_ops_test.py

示例8: testStrict_FullParameterizationPasses

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def testStrict_FullParameterizationPasses(self, fallback_rule):
    full_parameterization = {'first/Conv2D': 3, 'second/Conv2D': 13}
    default_num_outputs = 7
    decorator = ops.ConfigurableOps(
        parameterization=full_parameterization, fallback_rule=fallback_rule)
    first = decorator.conv2d(
        self.inputs,
        num_outputs=default_num_outputs,
        kernel_size=3,
        scope='first')
    second = decorator.conv2d(
        self.inputs,
        num_outputs=default_num_outputs,
        kernel_size=1,
        scope='second')

    self.assertAllEqual(3, first.shape.as_list()[3])
    self.assertAllEqual(13, second.shape.as_list()[3]) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:20,代碼來源:configurable_ops_test.py

示例9: testGetRegularizerForConcatWithNone

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def testGetRegularizerForConcatWithNone(self, test_concat, depth):
    image = tf.constant(0.0, shape=[1, 17, 19, 3])
    conv2 = layers.conv2d(image, 5, [1, 1], padding='SAME', scope='conv2')
    other_input = tf.add(
        tf.identity(tf.constant(3.0, shape=[1, 17, 19, depth])), 3.0)
    # other_input has None as regularizer.
    concat = tf.concat([other_input, conv2], 3)
    output = tf.add(concat, concat, name='output_out')
    op = concat.op if test_concat else output.op

    # Instantiate OpRegularizerManager.
    op_handler_dict = self._default_op_handler_dict
    op_handler_dict['Conv2D'] = StubConvSourceOpHandler(add_concat_model_stub)
    op_reg_manager = orm.OpRegularizerManager([output.op], op_handler_dict)

    expected_alive = add_concat_model_stub.expected_alive()
    alive = op_reg_manager.get_regularizer(op).alive_vector
    self.assertAllEqual([True] * depth, alive[:depth])
    self.assertAllEqual(expected_alive['conv2'], alive[depth:]) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:21,代碼來源:op_regularizer_manager_test.py

示例10: testGroupingOps

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def testGroupingOps(self, tested_op):
    th = 0.5
    image = tf.constant(0.5, shape=[1, 17, 19, 3])

    conv1 = layers.conv2d(image, 5, [1, 1], padding='SAME', scope='conv1')
    conv2 = layers.conv2d(image, 5, [1, 1], padding='SAME', scope='conv2')
    res = tested_op(conv1, conv2)

    # Instantiate OpRegularizerManager.
    op_handler_dict = self._default_op_handler_dict
    op_handler_dict['Conv2D'] = RandomConvSourceOpHandler(th)
    op_reg_manager = orm.OpRegularizerManager([res.op], op_handler_dict)

    alive = op_reg_manager.get_regularizer(res.op).alive_vector
    conv1_reg = op_reg_manager.get_regularizer(conv1.op).regularization_vector
    conv2_reg = op_reg_manager.get_regularizer(conv2.op).regularization_vector
    with self.session():
      self.assertAllEqual(alive, np.logical_or(conv1_reg.eval() > th,
                                               conv2_reg.eval() > th)) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:21,代碼來源:op_regularizer_manager_test.py

示例11: testGather

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def testGather(self):
    gather_index = [5, 6, 7, 8, 9, 0, 1, 2, 3, 4]
    with arg_scope(self._batch_norm_scope()):
      inputs = tf.zeros([2, 4, 4, 3])
      c1 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv1')
      gather = tf.gather(c1, gather_index, axis=3)

    manager = orm.OpRegularizerManager(
        [gather.op], self._default_op_handler_dict)

    c1_reg = manager.get_regularizer(_get_op('conv1/Conv2D'))
    gather_reg = manager.get_regularizer(_get_op('GatherV2'))

    # Check regularizer indices.
    self.assertAllEqual(list(range(10)), c1_reg.regularization_vector)
    # This fails due to gather not being supported.  Once gather is supported,
    # this test can be enabled to verify that the regularization vector is
    # gathered in the same ordering as the tensor.
    # self.assertAllEqual(
    #     gather_index, gather_reg.regularization_vector)

    # This test shows that gather is not supported.  The regularization vector
    # has the same initial ordering after the gather op scrambled the
    # channels.  Remove this once gather is supported.
    self.assertAllEqual(list(range(10)), gather_reg.regularization_vector) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:27,代碼來源:op_regularizer_manager_test.py

示例12: inception_v2_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def inception_v2_arg_scope(weight_decay=0.00004,
                           batch_norm_var_collection='moving_vars'):
  """Defines the default InceptionV2 arg scope.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_var_collection: The name of the collection for the batch norm
      variables.

  Returns:
    An `arg_scope` to use for the inception v3 model.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': 0.9997,
      # epsilon to prevent 0s in variance.
      'epsilon': 0.001,
      # collection containing update_ops.
      'updates_collections': ops.GraphKeys.UPDATE_OPS,
      # collection containing the moving mean and moving variance.
      'variables_collections': {
          'beta': None,
          'gamma': None,
          'moving_mean': [batch_norm_var_collection],
          'moving_variance': [batch_norm_var_collection],
      }
  }

  # Set weight_decay for weights in Conv and FC layers.
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope(
        [layers.conv2d],
        weights_initializer=initializers.variance_scaling_initializer(),
        activation_fn=nn_ops.relu,
        normalizer_fn=layers_lib.batch_norm,
        normalizer_params=batch_norm_params) as sc:
      return sc 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:41,代碼來源:inception_v2.py

示例13: alexnet_v2_arg_scope

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def alexnet_v2_arg_scope(weight_decay=0.0005):
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      biases_initializer=init_ops.constant_initializer(0.1),
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope([layers.conv2d], padding='SAME'):
      with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
        return arg_sc 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:11,代碼來源:alexnet_v2.py

示例14: feature_extractor

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def feature_extractor(net, output_dim, cfg):
  net = net - 0.5
  min_feature_map_size = 4
  assert output_dim % (
      min_feature_map_size**2) == 0, 'output dim=%d' % output_dim
  size = int(net.get_shape()[2])
  print('Agent CNN:')
  channels = cfg.base_channels
  print('    ', str(net.get_shape()))
  size /= 2
  net = ly.conv2d(
      net, num_outputs=channels, kernel_size=4, stride=2, activation_fn=lrelu)
  print('    ', str(net.get_shape()))
  while size > min_feature_map_size:
    if size == min_feature_map_size * 2:
      channels = output_dim / (min_feature_map_size**2)
    else:
      channels *= 2
    assert size % 2 == 0
    size /= 2
    net = ly.conv2d(
        net, num_outputs=channels, kernel_size=4, stride=2, activation_fn=lrelu)
    print('    ', str(net.get_shape()))
  print('before fc: ', net.get_shape()[1])
  net = tf.reshape(net, [-1, output_dim])
  net = tf.nn.dropout(net, cfg.dropout_keep_prob)
  return net


# Output: float \in [0, 1] 
開發者ID:yuanming-hu,項目名稱:exposure,代碼行數:32,代碼來源:agent.py

示例15: cnn

# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import conv2d [as 別名]
def cnn(net, is_train, cfg):
  net = net - 0.5
  channels = cfg.base_channels
  size = int(net.get_shape()[2])
  print('Critic CNN:')
  print('    ', str(net.get_shape()))
  size /= 2
  net = ly.conv2d(
      net,
      num_outputs=channels,
      kernel_size=4,
      stride=2,
      activation_fn=lrelu,
      normalizer_fn=None)
  print('    ', str(net.get_shape()))
  while size > 4:
    channels *= 2
    size /= 2
    net = ly.conv2d(
        net,
        num_outputs=channels,
        kernel_size=4,
        stride=2,
        activation_fn=lrelu,
        normalizer_fn=None,
        normalizer_params={
            'is_training': is_train,
            'decay': 0.9,
            'updates_collections': None
        })
    print('    ', str(net.get_shape()))
  net = tf.reshape(net, [-1, 4 * 4 * channels])
  return net


# Input: float \in [0, 1] 
開發者ID:yuanming-hu,項目名稱:exposure,代碼行數:38,代碼來源:critics.py


注:本文中的tensorflow.contrib.layers.conv2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。