本文整理匯總了Python中tensorflow.contrib.layers.apply_regularization方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.apply_regularization方法的具體用法?Python layers.apply_regularization怎麽用?Python layers.apply_regularization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.layers
的用法示例。
在下文中一共展示了layers.apply_regularization方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: loss
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import apply_regularization [as 別名]
def loss(self, data, labels):
"""The loss to minimize while training."""
if self.is_regression:
diff = self.training_inference_graph(data) - math_ops.to_float(labels)
mean_squared_error = math_ops.reduce_mean(diff * diff)
root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss")
loss = root_mean_squared_error
else:
loss = math_ops.reduce_mean(
nn_ops.sparse_softmax_cross_entropy_with_logits(
labels=array_ops.squeeze(math_ops.to_int32(labels)),
logits=self.training_inference_graph(data)),
name="loss")
if self.regularizer:
loss += layers.apply_regularization(self.regularizer,
variables.trainable_variables())
return loss
示例2: loss
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import apply_regularization [as 別名]
def loss(self, data, labels):
"""The loss to minimize while training."""
if self.is_regression:
diff = self.training_inference_graph(data) - math_ops.to_float(labels)
mean_squared_error = math_ops.reduce_mean(diff * diff)
root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss")
loss = root_mean_squared_error
else:
loss = math_ops.reduce_mean(
nn_ops.sparse_softmax_cross_entropy_with_logits(
self.training_inference_graph(data),
array_ops.squeeze(math_ops.to_int32(labels))),
name="loss")
if self.regularizer:
loss += layers.apply_regularization(self.regularizer,
variables.trainable_variables())
return loss
示例3: build_graph
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import apply_regularization [as 別名]
def build_graph(self):
self.construct_weights()
saver, logits = self.forward_pass()
log_softmax_var = tf.nn.log_softmax(logits)
# per-user average negative log-likelihood
neg_ll = -tf.reduce_mean(tf.reduce_sum(
log_softmax_var * self.input_ph, axis=1))
# apply regularization to weights
reg = l2_regularizer(self.lam)
reg_var = apply_regularization(reg, self.weights)
# tensorflow l2 regularization multiply 0.5 to the l2 norm
# multiply 2 so that it is back in the same scale
loss = neg_ll + 2 * reg_var
train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)
# add summary statistics
tf.summary.scalar('negative_multi_ll', neg_ll)
tf.summary.scalar('loss', loss)
merged = tf.summary.merge_all()
return saver, logits, loss, train_op, merged
示例4: add_loss
# 需要導入模塊: from tensorflow.contrib import layers [as 別名]
# 或者: from tensorflow.contrib.layers import apply_regularization [as 別名]
def add_loss(self):
"""
Add loss computation to the graph.
Uses:
self.logits_start: shape (batch_size, context_len)
IMPORTANT: Assumes that self.logits_start is masked (i.e. has -large in masked locations).
That's because the tf.nn.softmax_cross_entropy_with_logits
function applies softmax and then computes cross-entropy loss.
So you need to apply masking to the logits (by subtracting large
number in the padding location) BEFORE you pass to the
softmax_cross_entropy_with_logits function.
self.ans_start: shape (batch_size, context_len). One-hot with true answer start.
self.ans_end: shape (batch_size, context_len). One-hot with true answer end.
Defines:
self.loss_start, self.loss_end, self.loss: all scalar tensors
"""
with tf.variable_scope("loss"):
# Calculate loss for prediction of start position
loss_start = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits_start,
labels=self.ans_start)
self.loss_start = tf.reduce_mean(loss_start) # scalar. avg across batch
tf.summary.scalar('loss_start', self.loss_start) # log to tensorboard
# Calculate loss for prediction of end position
loss_end = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits_end,
labels=self.ans_end)
self.loss_end = tf.reduce_mean(loss_end)
tf.summary.scalar('loss_end', self.loss_end)
# Calculate the L2 regularization loss
regularization_loss_vars = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
regularizer = tf_layers.l2_regularizer(scale=self.flags.l2_lambda)
self.l2_loss = tf_layers.apply_regularization(regularizer, regularization_loss_vars)
# Add the loss components
self.loss = self.loss_start + self.loss_end + self.l2_loss
tf.summary.scalar('loss', self.loss)
# Apply EMA decay (https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage)
ema_op = self.ema.apply(tf.trainable_variables())
with tf.control_dependencies([ema_op]):
self.loss = tf.identity(self.loss)