當前位置: 首頁>>代碼示例>>Python>>正文


Python variables.model_variable方法代碼示例

本文整理匯總了Python中tensorflow.contrib.framework.python.ops.variables.model_variable方法的典型用法代碼示例。如果您正苦於以下問題:Python variables.model_variable方法的具體用法?Python variables.model_variable怎麽用?Python variables.model_variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.framework.python.ops.variables的用法示例。


在下文中一共展示了variables.model_variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _model_variable_getter

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _model_variable_getter(getter, name, shape=None, dtype=None,
                           initializer=None, regularizer=None, trainable=True,
                           collections=None, caching_device=None,
                           partitioner=None, rename=None, use_resource=None,
                           **_):
  """Getter that uses model_variable for compatibility with core layers."""
  short_name = name.split('/')[-1]
  if rename and short_name in rename:
    name_components = name.split('/')
    name_components[-1] = rename[short_name]
    name = '/'.join(name_components)
  return variables.model_variable(
      name, shape=shape, dtype=dtype, initializer=initializer,
      regularizer=regularizer, collections=collections, trainable=trainable,
      caching_device=caching_device, partitioner=partitioner,
      custom_getter=getter, use_resource=use_resource) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:layers.py

示例2: _model_variable_getter

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _model_variable_getter(getter, name, shape=None, dtype=None,
                           initializer=None, regularizer=None, trainable=True,
                           collections=None, caching_device=None,
                           partitioner=None, rename=None, use_resource=None,
                           **_):
    """Getter that uses model_variable for compatibility with core layers."""
    short_name = name.split('/')[-1]
    if rename and short_name in rename:
        name_components = name.split('/')
        name_components[-1] = rename[short_name]
        name = '/'.join(name_components)
    return variables.model_variable(
        name, shape=shape, dtype=dtype, initializer=initializer,
        regularizer=regularizer, collections=collections, trainable=trainable,
        caching_device=caching_device, partitioner=partitioner,
        custom_getter=getter, use_resource=use_resource) 
開發者ID:balancap,項目名稱:tf-imagenet,代碼行數:18,代碼來源:convolution.py

示例3: sequence_softmax

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def sequence_softmax(inputs, noutput, scope=None, name=None, linear_name=None):
  """Run a softmax layer over all the time steps of an input sequence.

  Args:
    inputs: (length, batch_size, depth) tensor
    noutput: output depth
    scope: optional scope name
    name: optional name for output tensor
    linear_name: name for linear (pre-softmax) output

  Returns:
    A tensor of size (length, batch_size, noutput).

  """
  length, _, ninputs = _shape(inputs)
  inputs_u = array_ops.unstack(inputs)
  output_u = []
  with variable_scope.variable_scope(scope, "SequenceSoftmax", [inputs]):
    initial_w = random_ops.truncated_normal([0 + ninputs, noutput], stddev=0.1)
    initial_b = constant_op.constant(0.1, shape=[noutput])
    w = variables.model_variable("weights", initializer=initial_w)
    b = variables.model_variable("biases", initializer=initial_b)
    for i in xrange(length):
      with variable_scope.variable_scope(scope, "SequenceSoftmaxStep",
                                         [inputs_u[i]]):
        # TODO(tmb) consider using slim.fully_connected(...,
        # activation_fn=tf.nn.softmax)
        linear = nn_ops.xw_plus_b(inputs_u[i], w, b, name=linear_name)
        output = nn_ops.softmax(linear)
        output_u += [output]
    outputs = array_ops.stack(output_u, name=name)
  return outputs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:lstm1d.py

示例4: _create_embedding_lookup

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _create_embedding_lookup(column,
                             columns_to_tensors,
                             embedding_lookup_arguments,
                             num_outputs,
                             trainable,
                             weight_collections):
  """Creates variables and returns predictions for linear weights in a model.

  Args:
   column: the column we're working on.
   columns_to_tensors: a map from column name to tensors.
   embedding_lookup_arguments: arguments for embedding lookup.
   num_outputs: how many outputs.
   trainable: whether the variable we create is trainable.
   weight_collections: weights will be placed here.

  Returns:
  variables: the created embeddings.
  predictions: the computed predictions.
  """
  with variable_scope.variable_scope(
      None, default_name=column.name, values=columns_to_tensors.values()):
    variable = contrib_variables.model_variable(
        name='weights',
        shape=[embedding_lookup_arguments.vocab_size, num_outputs],
        dtype=dtypes.float32,
        initializer=embedding_lookup_arguments.initializer,
        trainable=trainable,
        collections=weight_collections)
    if fc._is_variable(variable):  # pylint: disable=protected-access
      variable = [variable]
    else:
      variable = variable._get_variable_list()  # pylint: disable=protected-access
    predictions = embedding_ops.safe_embedding_lookup_sparse(
        variable,
        embedding_lookup_arguments.input_tensor,
        sparse_weights=embedding_lookup_arguments.weight_tensor,
        combiner=embedding_lookup_arguments.combiner,
        name=column.name + '_weights')
    return variable, predictions 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:42,代碼來源:feature_column_ops.py

示例5: _model_variable_getter

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _model_variable_getter(getter, name, shape=None, dtype=None,
                           initializer=None, regularizer=None, trainable=True,
                           collections=None, caching_device=None,
                           partitioner=None, rename=None, **_):
  """Getter that uses model_variable for compatibility with core layers."""
  short_name = name.split('/')[-1]
  if rename and short_name in rename:
    name_components = name.split('/')
    name_components[-1] = rename[short_name]
    name = '/'.join(name_components)
  return variables.model_variable(
      name, shape=shape, dtype=dtype, initializer=initializer,
      regularizer=regularizer, collections=collections, trainable=trainable,
      caching_device=caching_device, partitioner=partitioner,
      custom_getter=getter) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:17,代碼來源:layers.py

示例6: _create_embedding_lookup

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _create_embedding_lookup(column,
                             columns_to_tensors,
                             embedding_lookup_arguments,
                             num_outputs,
                             trainable,
                             weight_collections):
  """Creates variables and returns predictions for linear weights in a model.

  Args:
   column: the column we're working on.
   columns_to_tensors: a map from column name to tensors.
   embedding_lookup_arguments: arguments for embedding lookup.
   num_outputs: how many outputs.
   trainable: whether the variable we create is trainable.
   weight_collections: weights will be placed here.

  Returns:
  variables: the created embeddings.
  predictions: the computed predictions.
  """
  with variable_scope.variable_scope(
      None, default_name=column.name, values=columns_to_tensors.values()):
    variable = contrib_variables.model_variable(
        name='weights',
        shape=[embedding_lookup_arguments.vocab_size, num_outputs],
        dtype=dtypes.float32,
        initializer=embedding_lookup_arguments.initializer,
        trainable=trainable,
        collections=weight_collections)
    if isinstance(variable, variables.Variable):
      variable = [variable]
    else:
      variable = variable._get_variable_list()  # pylint: disable=protected-access
    predictions = embedding_ops.safe_embedding_lookup_sparse(
        variable,
        embedding_lookup_arguments.input_tensor,
        sparse_weights=embedding_lookup_arguments.weight_tensor,
        combiner=embedding_lookup_arguments.combiner,
        name=column.name + '_weights')
    return variable, predictions 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:42,代碼來源:feature_column_ops.py

示例7: preact_conv2d

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def preact_conv2d(
        inputs,
        num_outputs,
        kernel_size,
        stride=1,
        padding='SAME',
        activation_fn=nn.relu,
        normalizer_fn=None,
        normalizer_params=None,
        weights_initializer=initializers.xavier_initializer(),
        weights_regularizer=None,
        reuse=None,
        variables_collections=None,
        outputs_collections=None,
        trainable=True,
        scope=None):
    """Adds a 2D convolution preceded by batch normalization and activation.
    """
    with variable_scope.variable_scope(scope, 'Conv', values=[inputs], reuse=reuse) as sc:
        inputs = ops.convert_to_tensor(inputs)
        dtype = inputs.dtype.base_dtype
        if normalizer_fn:
            normalizer_params = normalizer_params or {}
            inputs = normalizer_fn(inputs, activation_fn=activation_fn, **normalizer_params)
        kernel_h, kernel_w = utils.two_element_tuple(kernel_size)
        stride_h, stride_w = utils.two_element_tuple(stride)
        num_filters_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
        weights_shape = [kernel_h, kernel_w, num_filters_in, num_outputs]
        weights_collections = utils.get_variable_collections(variables_collections, 'weights')
        weights = variables.model_variable('weights',
                                           shape=weights_shape,
                                           dtype=dtype,
                                           initializer=weights_initializer,
                                           regularizer=weights_regularizer,
                                           collections=weights_collections,
                                           trainable=trainable)
        outputs = nn.conv2d(inputs, weights, [1, stride_h, stride_w, 1], padding=padding)
        return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:40,代碼來源:preact_conv.py

示例8: _model_variable_getter

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _model_variable_getter(getter,
                           name,
                           shape=None,
                           dtype=None,
                           initializer=None,
                           regularizer=None,
                           trainable=True,
                           collections=None,
                           caching_device=None,
                           partitioner=None,
                           rename=None,
                           use_resource=None,
                           **_):
  """Getter that uses model_variable for compatibility with core layers."""
  short_name = name.split('/')[-1]
  if rename and short_name in rename:
    name_components = name.split('/')
    name_components[-1] = rename[short_name]
    name = '/'.join(name_components)
  return variables.model_variable(
      name,
      shape=shape,
      dtype=dtype,
      initializer=initializer,
      regularizer=regularizer,
      collections=collections,
      trainable=trainable,
      caching_device=caching_device,
      partitioner=partitioner,
      custom_getter=getter,
      use_resource=use_resource) 
開發者ID:HiKapok,項目名稱:tf.fashionAI,代碼行數:33,代碼來源:depth_conv2d.py

示例9: _model_variable_getter

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _model_variable_getter(getter,
                           name,
                           shape=None,
                           dtype=None,
                           initializer=None,
                           regularizer=None,
                           trainable=True,
                           collections=None,
                           caching_device=None,
                           partitioner=None,
                           rename=None,
                           use_resource=None,
                           **_):
    """Getter that uses model_variable for compatibility with core layers."""
    short_name = name.split('/')[-1]
    if rename and short_name in rename:
        name_components = name.split('/')
        name_components[-1] = rename[short_name]
        name = '/'.join(name_components)
    return variables.model_variable(
        name,
        shape=shape,
        dtype=dtype,
        initializer=initializer,
        regularizer=regularizer,
        collections=collections,
        trainable=trainable,
        caching_device=caching_device,
        partitioner=partitioner,
        custom_getter=getter,
        use_resource=use_resource) 
開發者ID:hyperconnect,項目名稱:MMNet,代碼行數:33,代碼來源:mmnet_utils.py

示例10: get_model_variables

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def get_model_variables(getter,
                        name,
                        shape=None,
                        dtype=None,
                        initializer=None,
                        regularizer=None,
                        trainable=True,
                        collections=None,
                        caching_device=None,
                        partitioner=None,
                        rename=None,
                        use_resource=None,
                        **_):
  """This ensure variables are retrieved in a consistent way for core layers."""
  short_name = name.split('/')[-1]
  if rename and short_name in rename:
    name_components = name.split('/')
    name_components[-1] = rename[short_name]
    name = '/'.join(name_components)
  return variables.model_variable(
      name,
      shape=shape,
      dtype=dtype,
      initializer=initializer,
      regularizer=regularizer,
      collections=collections,
      trainable=trainable,
      caching_device=caching_device,
      partitioner=partitioner,
      custom_getter=getter,
      use_resource=use_resource) 
開發者ID:google-research,項目名稱:rigl,代碼行數:33,代碼來源:pruning_layers.py

示例11: init_state

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def init_state(self, state_name, batch_size, dtype, learned_state=False):
    """Creates an initial state compatible with this cell.

    Args:
      state_name: name of the state tensor
      batch_size: model batch size
      dtype: dtype for the tensor values i.e. tf.float32
      learned_state: whether the initial state should be learnable. If false,
        the initial state is set to all 0's

    Returns:
      The created initial state.
    """
    state_size = (
        self.state_size_flat if self._flattened_state else self.state_size)
    # list of 2 zero tensors or variables tensors, depending on if
    # learned_state is true
    ret_flat = [(variables.model_variable(
        state_name + str(i),
        shape=s,
        dtype=dtype,
        initializer=tf.truncated_normal_initializer(stddev=0.03))
                 if learned_state else tf.zeros(
                     [batch_size] + s, dtype=dtype, name=state_name))
                for i, s in enumerate(state_size)]

    # duplicates initial state across the batch axis if it's learned
    if learned_state:
      ret_flat = [
          tf.stack([tensor
                    for i in range(int(batch_size))])
          for tensor in ret_flat
      ]
    for s, r in zip(state_size, ret_flat):
      r.set_shape([None] + s)
    return tf.contrib.framework.nest.pack_sequence_as(
        structure=[1, 1], flat_sequence=ret_flat) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:39,代碼來源:lstm_cells.py

示例12: init_state

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def init_state(self, state_name, batch_size, dtype, learned_state=False):
    """Creates an initial state compatible with this cell.

    Args:
      state_name: name of the state tensor
      batch_size: model batch size
      dtype: dtype for the tensor values i.e. tf.float32
      learned_state: whether the initial state should be learnable. If false,
        the initial state is set to all 0's

    Returns:
      The created initial state.
    """
    state_size = (
        self.state_size_flat if self._flatten_state else self.state_size)
    # list of 2 zero tensors or variables tensors, depending on if
    # learned_state is true
    # pylint: disable=g-long-ternary,g-complex-comprehension
    ret_flat = [(contrib_variables.model_variable(
        state_name + str(i),
        shape=s,
        dtype=dtype,
        initializer=tf.truncated_normal_initializer(stddev=0.03))
                 if learned_state else tf.zeros(
                     [batch_size] + s, dtype=dtype, name=state_name))
                for i, s in enumerate(state_size)]

    # duplicates initial state across the batch axis if it's learned
    if learned_state:
      ret_flat = [
          tf.stack([tensor
                    for i in range(int(batch_size))])
          for tensor in ret_flat
      ]
    for s, r in zip(state_size, ret_flat):
      r.set_shape([None] + s)
    return tf.nest.pack_sequence_as(structure=[1, 1], flat_sequence=ret_flat) 
開發者ID:tensorflow,項目名稱:models,代碼行數:39,代碼來源:lstm_cells.py

示例13: _create_joint_embedding_lookup

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _create_joint_embedding_lookup(columns_to_tensors,
                                   embedding_lookup_arguments,
                                   num_outputs,
                                   trainable,
                                   weight_collections):
  """Creates an embedding lookup for all columns sharing a single weight."""
  for arg in embedding_lookup_arguments:
    assert arg.weight_tensor is None, (
        'Joint sums for weighted sparse columns are not supported. '
        'Please use weighted_sum_from_feature_columns instead.')
    assert arg.combiner == 'sum', (
        'Combiners other than sum are not supported for joint sums. '
        'Please use weighted_sum_from_feature_columns instead.')
  assert len(embedding_lookup_arguments) >= 1, (
      'At least one column must be in the model.')
  prev_size = 0
  sparse_tensors = []
  for a in embedding_lookup_arguments:
    t = a.input_tensor
    values = t.values + prev_size
    prev_size += a.vocab_size
    sparse_tensors.append(
        sparse_tensor_py.SparseTensor(t.indices,
                                      values,
                                      t.dense_shape))
  sparse_tensor = sparse_ops.sparse_concat(1, sparse_tensors)
  with variable_scope.variable_scope(
      None, default_name='linear_weights', values=columns_to_tensors.values()):
    variable = contrib_variables.model_variable(
        name='weights',
        shape=[prev_size, num_outputs],
        dtype=dtypes.float32,
        initializer=init_ops.zeros_initializer(),
        trainable=trainable,
        collections=weight_collections)
    if fc._is_variable(variable):  # pylint: disable=protected-access
      variable = [variable]
    else:
      variable = variable._get_variable_list()  # pylint: disable=protected-access
    predictions = embedding_ops.safe_embedding_lookup_sparse(
        variable,
        sparse_tensor,
        sparse_weights=None,
        combiner='sum',
        name='_weights')
    return variable, predictions 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:48,代碼來源:feature_column_ops.py

示例14: bow_encoder

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def bow_encoder(ids,
                vocab_size,
                embed_dim,
                sparse_lookup=True,
                initializer=None,
                regularizer=None,
                trainable=True,
                scope=None,
                reuse=None):
  """Maps a sequence of symbols to a vector per example by averaging embeddings.

  Args:
    ids: `[batch_size, doc_length]` `Tensor` or `SparseTensor` of type
      `int32` or `int64` with symbol ids.
    vocab_size: Integer number of symbols in vocabulary.
    embed_dim: Integer number of dimensions for embedding matrix.
    sparse_lookup: `bool`, if `True`, converts ids to a `SparseTensor`
        and performs a sparse embedding lookup. This is usually faster,
        but not desirable if padding tokens should have an embedding. Empty rows
        are assigned a special embedding.
    initializer: An initializer for the embeddings, if `None` default for
        current scope is used.
    regularizer: Optional regularizer for the embeddings.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
    scope: Optional string specifying the variable scope for the op, required
        if `reuse=True`.
    reuse: If `True`, variables inside the op will be reused.

  Returns:
    Encoding `Tensor` `[batch_size, embed_dim]` produced by
    averaging embeddings.

  Raises:
    ValueError: If `embed_dim` or `vocab_size` are not specified.
  """
  if not vocab_size or not embed_dim:
    raise ValueError('Must specify vocab size and embedding dimension')
  with variable_scope.variable_scope(
      scope, 'bow_encoder', [ids], reuse=reuse):
    embeddings = variables.model_variable(
        'embeddings', shape=[vocab_size, embed_dim],
        initializer=initializer, regularizer=regularizer,
        trainable=trainable)
    if sparse_lookup:
      if isinstance(ids, sparse_tensor.SparseTensor):
        sparse_ids = ids
      else:
        sparse_ids = sparse_ops.dense_to_sparse_tensor(ids)
      return contrib_embedding_ops.safe_embedding_lookup_sparse(
          [embeddings], sparse_ids, combiner='mean', default_id=0)
    else:
      if isinstance(ids, sparse_tensor.SparseTensor):
        raise TypeError('ids are expected to be dense Tensor, got: %s', ids)
      return math_ops.reduce_mean(
          embedding_ops.embedding_lookup(embeddings, ids),
          reduction_indices=1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:59,代碼來源:encoders.py

示例15: _create_joint_embedding_lookup

# 需要導入模塊: from tensorflow.contrib.framework.python.ops import variables [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops.variables import model_variable [as 別名]
def _create_joint_embedding_lookup(columns_to_tensors,
                                   embedding_lookup_arguments,
                                   num_outputs,
                                   trainable,
                                   weight_collections):
  """Creates an embedding lookup for all columns sharing a single weight."""
  for arg in embedding_lookup_arguments:
    assert arg.weight_tensor is None, (
        'Joint sums for weighted sparse columns are not supported. '
        'Please use weighted_sum_from_feature_columns instead.')
    assert arg.combiner == 'sum', (
        'Combiners other than sum are not supported for joint sums. '
        'Please use weighted_sum_from_feature_columns instead.')
  assert len(embedding_lookup_arguments) >= 1, (
      'At least one column must be in the model.')
  prev_size = 0
  sparse_tensors = []
  for a in embedding_lookup_arguments:
    t = a.input_tensor
    values = t.values + prev_size
    prev_size += a.vocab_size
    sparse_tensors.append(
        sparse_tensor_py.SparseTensor(t.indices,
                                      values,
                                      t.dense_shape))
  sparse_tensor = sparse_ops.sparse_concat(1, sparse_tensors)
  with variable_scope.variable_scope(
      None, default_name='linear_weights', values=columns_to_tensors.values()):
    variable = contrib_variables.model_variable(
        name='weights',
        shape=[prev_size, num_outputs],
        dtype=dtypes.float32,
        initializer=init_ops.zeros_initializer(),
        trainable=trainable,
        collections=weight_collections)
    if isinstance(variable, variables.Variable):
      variable = [variable]
    else:
      variable = variable._get_variable_list()  # pylint: disable=protected-access
    predictions = embedding_ops.safe_embedding_lookup_sparse(
        variable,
        sparse_tensor,
        sparse_weights=None,
        combiner='sum',
        name='_weights')
    return variable, predictions 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:48,代碼來源:feature_column_ops.py


注:本文中的tensorflow.contrib.framework.python.ops.variables.model_variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。