當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.arg_scope方法代碼示例

本文整理匯總了Python中tensorflow.contrib.framework.python.ops.arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.arg_scope方法的具體用法?Python ops.arg_scope怎麽用?Python ops.arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.framework.python.ops的用法示例。


在下文中一共展示了ops.arg_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: vgg_arg_scope

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def vgg_arg_scope(weight_decay=0.0005):
  """Defines the VGG arg scope.

  Args:
    weight_decay: The l2 regularization coefficient.

  Returns:
    An arg_scope.
  """
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      biases_initializer=init_ops.zeros_initializer()):
    with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
      return arg_sc 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:18,代碼來源:vgg16.py

示例2: testClassificationShapes

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def testClassificationShapes(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs, num_classes, global_pool, scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 28, 28, 4],
          'resnet/block2': [2, 14, 14, 8],
          'resnet/block3': [2, 7, 7, 16],
          'resnet/block4': [2, 7, 7, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:resnet_v2_test.py

示例3: testFullyConvolutionalEndpointShapes

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def testFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 321, 321, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs, num_classes, global_pool, scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 21, 21, 8],
          'resnet/block3': [2, 11, 11, 16],
          'resnet/block4': [2, 11, 11, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:resnet_v2_test.py

示例4: testRootlessFullyConvolutionalEndpointShapes

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def testRootlessFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 128, 128, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs,
          num_classes,
          global_pool,
          include_root_block=False,
          scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 64, 64, 4],
          'resnet/block2': [2, 32, 32, 8],
          'resnet/block3': [2, 16, 16, 16],
          'resnet/block4': [2, 16, 16, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:resnet_v2_test.py

示例5: testAtrousFullyConvolutionalEndpointShapes

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def testAtrousFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    output_stride = 8
    inputs = create_test_input(2, 321, 321, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs,
          num_classes,
          global_pool,
          output_stride=output_stride,
          scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 41, 41, 8],
          'resnet/block3': [2, 41, 41, 16],
          'resnet/block4': [2, 41, 41, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:23,代碼來源:resnet_v2_test.py

示例6: testAtrousFullyConvolutionalValues

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def testAtrousFullyConvolutionalValues(self):
    """Verify dense feature extraction with atrous convolution."""
    nominal_stride = 32
    for output_stride in [4, 8, 16, 32, None]:
      with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
        with ops.Graph().as_default():
          with self.test_session() as sess:
            random_seed.set_random_seed(0)
            inputs = create_test_input(2, 81, 81, 3)
            # Dense feature extraction followed by subsampling.
            output, _ = self._resnet_small(
                inputs, None, global_pool=False, output_stride=output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride
            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            variable_scope.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected, _ = self._resnet_small(inputs, None, global_pool=False)
            sess.run(variables.global_variables_initializer())
            self.assertAllClose(
                output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:resnet_v2_test.py

示例7: actnorm

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def actnorm(name, x, scale=1., logdet=None, logscale_factor=3., batch_variance=False, reverse=False, init=False, trainable=True):
    if arg_scope([get_variable_ddi], trainable=trainable):
        if not reverse:
            x = actnorm_center(name+"_center", x, reverse)
            x = actnorm_scale(name+"_scale", x, scale, logdet,
                              logscale_factor, batch_variance, reverse, init)
            if logdet != None:
                x, logdet = x
        else:
            x = actnorm_scale(name + "_scale", x, scale, logdet,
                              logscale_factor, batch_variance, reverse, init)
            if logdet != None:
                x, logdet = x
            x = actnorm_center(name+"_center", x, reverse)
        if logdet != None:
            return x, logdet
        return x

# Activation normalization 
開發者ID:openai,項目名稱:glow,代碼行數:21,代碼來源:tfops.py

示例8: up

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def up(self, input, **_):
        hps = self.hps
        h_size = hps.h_size
        z_size = hps.z_size
        stride = [2, 2] if self.downsample else [1, 1]

        with arg_scope([conv2d]):
            x = tf.nn.elu(input)
            x = conv2d("up_conv1", x, 2 * z_size + 2 * h_size, stride=stride)
            self.qz_mean, self.qz_logsd, self.up_context, h = split(x, 1, [z_size, z_size, h_size, h_size])

            h = tf.nn.elu(h)
            h = conv2d("up_conv3", h, h_size)
            if self.downsample:
                input = resize_nearest_neighbor(input, 0.5)
            return input + 0.1 * h 
開發者ID:openai,項目名稱:iaf,代碼行數:18,代碼來源:tf_train.py

示例9: predictron_arg_scope

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def predictron_arg_scope(weight_decay=0.0001,
                         batch_norm_decay=0.997,
                         batch_norm_epsilon=1e-5,
                         batch_norm_scale=True):
  batch_norm_params = {
    'decay': batch_norm_decay,
    'epsilon': batch_norm_epsilon,
    'scale': batch_norm_scale,
    'updates_collections': tf.GraphKeys.UPDATE_OPS,
  }

  # Set weight_decay for weights in Conv and FC layers.
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope(
        [layers.conv2d],
        weights_initializer=initializers.variance_scaling_initializer(),
        activation_fn=None,
        normalizer_fn=layers_lib.batch_norm,
        normalizer_params=batch_norm_params) as sc:
      return sc 
開發者ID:zhongwen,項目名稱:predictron,代碼行數:24,代碼來源:util.py

示例10: vgg_arg_scope

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def vgg_arg_scope(weight_decay=0.0005):
    """Defines the VGG arg scope.

    Args:
      weight_decay: The l2 regularization coefficient.

    Returns:
      An arg_scope.
    """
    with arg_scope(
        [layers.conv2d, layers_lib.fully_connected],
        activation_fn=nn_ops.relu,
        weights_regularizer=regularizers.l2_regularizer(weight_decay),
        biases_initializer=init_ops.zeros_initializer()
    ):
        with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
            return arg_sc 
開發者ID:Sargunan,項目名稱:Table-Detection-using-Deep-learning,代碼行數:19,代碼來源:truncated_vgg.py

示例11: inception_v2_arg_scope

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def inception_v2_arg_scope(weight_decay=0.00004,
                           batch_norm_var_collection='moving_vars'):
  """Defines the default InceptionV2 arg scope.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_var_collection: The name of the collection for the batch norm
      variables.

  Returns:
    An `arg_scope` to use for the inception v3 model.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': 0.9997,
      # epsilon to prevent 0s in variance.
      'epsilon': 0.001,
      # collection containing update_ops.
      'updates_collections': ops.GraphKeys.UPDATE_OPS,
      # collection containing the moving mean and moving variance.
      'variables_collections': {
          'beta': None,
          'gamma': None,
          'moving_mean': [batch_norm_var_collection],
          'moving_variance': [batch_norm_var_collection],
      }
  }

  # Set weight_decay for weights in Conv and FC layers.
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope(
        [layers.conv2d],
        weights_initializer=initializers.variance_scaling_initializer(),
        activation_fn=nn_ops.relu,
        normalizer_fn=layers_lib.batch_norm,
        normalizer_params=batch_norm_params) as sc:
      return sc 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:41,代碼來源:inception_v2.py

示例12: alexnet_v2_arg_scope

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def alexnet_v2_arg_scope(weight_decay=0.0005):
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      biases_initializer=init_ops.constant_initializer(0.1),
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope([layers.conv2d], padding='SAME'):
      with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
        return arg_sc 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:11,代碼來源:alexnet_v2.py

示例13: overfeat_arg_scope

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def overfeat_arg_scope(weight_decay=0.0005):
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      biases_initializer=init_ops.zeros_initializer()):
    with arg_scope([layers.conv2d], padding='SAME'):
      with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
        return arg_sc 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:11,代碼來源:overfeat.py

示例14: _resnet_plain

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
    """A plain ResNet without extra layers before or after the ResNet blocks."""
    with variable_scope.variable_scope(scope, values=[inputs]):
      with arg_scope([layers.conv2d], outputs_collections='end_points'):
        net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
        end_points = utils.convert_collection_to_dict('end_points')
        return net, end_points 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:9,代碼來源:resnet_v2_test.py

示例15: testEndPointsV2

# 需要導入模塊: from tensorflow.contrib.framework.python import ops [as 別名]
# 或者: from tensorflow.contrib.framework.python.ops import arg_scope [as 別名]
def testEndPointsV2(self):
    """Test the end points of a tiny v2 bottleneck network."""
    bottleneck = resnet_v2.bottleneck
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])
    ]
    inputs = create_test_input(2, 32, 16, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
    expected = [
        'tiny/block1/unit_1/bottleneck_v2/shortcut',
        'tiny/block1/unit_1/bottleneck_v2/conv1',
        'tiny/block1/unit_1/bottleneck_v2/conv2',
        'tiny/block1/unit_1/bottleneck_v2/conv3',
        'tiny/block1/unit_2/bottleneck_v2/conv1',
        'tiny/block1/unit_2/bottleneck_v2/conv2',
        'tiny/block1/unit_2/bottleneck_v2/conv3',
        'tiny/block2/unit_1/bottleneck_v2/shortcut',
        'tiny/block2/unit_1/bottleneck_v2/conv1',
        'tiny/block2/unit_1/bottleneck_v2/conv2',
        'tiny/block2/unit_1/bottleneck_v2/conv3',
        'tiny/block2/unit_2/bottleneck_v2/conv1',
        'tiny/block2/unit_2/bottleneck_v2/conv2',
        'tiny/block2/unit_2/bottleneck_v2/conv3'
    ]
    self.assertItemsEqual(expected, end_points) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:29,代碼來源:resnet_v2_test.py


注:本文中的tensorflow.contrib.framework.python.ops.arg_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。