當前位置: 首頁>>代碼示例>>Python>>正文


Python framework.arg_scope方法代碼示例

本文整理匯總了Python中tensorflow.contrib.framework.arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python framework.arg_scope方法的具體用法?Python framework.arg_scope怎麽用?Python framework.arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.framework的用法示例。


在下文中一共展示了framework.arg_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_args

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def set_args(largs, conv_bias=True, weights_regularizer=None):
    from .layers import conv2d
    from .layers import fc
    from .layers import sconv2d

    def real_set_args(func):
        def wrapper(*args, **kwargs):
            is_training = kwargs.get('is_training', False)
            layers = sum([x for (x, y) in largs(is_training)], [])
            layers_args = [arg_scope(x, **y) for (x, y) in largs(is_training)]
            if not conv_bias:
                layers_args += [arg_scope([conv2d], biases_initializer=None)]
            if weights_regularizer is not None:
                layers_args += [arg_scope(
                    [conv2d, fc, sconv2d],
                    weights_regularizer=weights_regularizer)]
            with arg_scope(layers, outputs_collections=__outputs__):
                with arg_scopes(layers_args):
                    x = func(*args, **kwargs)
                    x.model_name = func.__name__
                    return x
        return wrapper
    return real_set_args 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:25,代碼來源:utils.py

示例2: step_fn

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def step_fn(wrapped_fn):
        """ Wrap an RNN class method's step function to implement basic expected behavior """
        @functools.wraps(wrapped_fn)
        def wrapper(self, *args, **kwargs):
            """ Determine scope reuse and keep track of states and outputs """
            with framework.arg_scope(
                [self.collect_named_outputs],
                outputs_collections=kwargs.get('outputs_collections')):

                with tf.variable_scope(self.variable_scope, reuse=self.reuse):
                    output, state = wrapped_fn(self, *args, **kwargs)
                    output = tf.identity(output, name='rnn_output')

                    self.outputs.append(output)
                    self.states.append(state)

                    return self.collect_named_outputs(output)

        return wrapper 
開發者ID:dojoteef,項目名稱:glas,代碼行數:21,代碼來源:rnn.py

示例3: __call__

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def __call__(self, outputs_collections=None):
        """ Execute the next time step of the GLAS model """
        # Get the current output and decoded output (or zeros if they do not exist yet)
        output = self.output if self.step > 0 else 0.0
        decoded = self.decoder.output if self.step > 0 else tf.zeros((1, self.decoder.output_size))

        with framework.arg_scope(
            [self.decoder.next, self.sampler.random_sample],
            outputs_collections=outputs_collections):

            # sample from the approximate posterior
            sample = self.sampler.random_sample()

            # decode from the latent space
            decoded = self.decoder(sample)

            written = self.attention.write(decoded)

        return output + written, None 
開發者ID:dojoteef,項目名稱:glas,代碼行數:21,代碼來源:reader.py

示例4: testShareParams

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testShareParams(self):
    # Tests reuse option.
    first_outputs = 2
    alternate_num_outputs = 12
    parameterization = {'first/Conv2D': first_outputs}
    decorator = ops.ConfigurableOps(parameterization=parameterization)
    explicit = layers.conv2d(
        self.inputs, first_outputs, 3, scope='first')
    with arg_scope([layers.conv2d], reuse=True):
      decorated = decorator.conv2d(
          self.inputs,
          num_outputs=alternate_num_outputs,
          kernel_size=3,
          scope='first')
    with self.cached_session():
      tf.global_variables_initializer().run()
      # verifies that parameters are shared.
      self.assertAllClose(explicit.eval(), decorated.eval())
    conv_ops = sorted([
        op.name
        for op in tf.get_default_graph().get_operations()
        if op.type == 'Conv2D'
    ])
    self.assertAllEqual(['first/Conv2D', 'first_1/Conv2D'], conv_ops) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:26,代碼來源:configurable_ops_test.py

示例5: testConcatOpGetRegularizer

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testConcatOpGetRegularizer(self, use_batch_norm, use_partitioner):
    sc = self._batch_norm_scope() if use_batch_norm else []
    partitioner = tf.fixed_size_partitioner(2) if use_partitioner else None
    model_stub = add_concat_model_stub
    with arg_scope(sc):
      with tf.variable_scope(tf.get_variable_scope(), partitioner=partitioner):
        final_op = add_concat_model_stub.build_model()

    # Instantiate OpRegularizerManager.
    op_handler_dict = self._default_op_handler_dict
    op_handler_dict['FusedBatchNormV3'] = StubBatchNormSourceOpHandler(
        model_stub)
    if not use_batch_norm:
      op_handler_dict['Conv2D'] = StubConvSourceOpHandler(model_stub)
    op_reg_manager = orm.OpRegularizerManager([final_op], op_handler_dict)

    expected_alive = model_stub.expected_alive()
    expected = np.logical_or(expected_alive['conv4'], expected_alive['concat'])
    conv_reg = op_reg_manager.get_regularizer(_get_op('conv4/Conv2D'))
    self.assertAllEqual(expected, conv_reg.alive_vector)

    relu_reg = op_reg_manager.get_regularizer(_get_op('conv4/Relu'))
    self.assertAllEqual(expected, relu_reg.alive_vector) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:25,代碼來源:op_regularizer_manager_test.py

示例6: testGroupConcatOpGetRegularizerValues

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testGroupConcatOpGetRegularizerValues(self, op_name, short_name):
    model_stub = grouping_concat_model_stub
    with arg_scope(self._batch_norm_scope()):
      with tf.variable_scope(tf.get_variable_scope()):
        final_op = model_stub.build_model()

    # Instantiate OpRegularizerManager.
    op_handler_dict = self._default_op_handler_dict
    op_handler_dict['FusedBatchNormV3'] = StubBatchNormSourceOpHandler(
        model_stub)

    op_reg_manager = orm.OpRegularizerManager([final_op], op_handler_dict)

    expected_alive = model_stub.expected_alive()
    expected_reg = model_stub.expected_regularization()

    reg = op_reg_manager.get_regularizer(_get_op(op_name))
    self.assertAllEqual(expected_alive[short_name], reg.alive_vector)
    self.assertAllClose(expected_reg[short_name], reg.regularization_vector) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:21,代碼來源:op_regularizer_manager_test.py

示例7: testGroupConcatOpGetRegularizerObjects

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testGroupConcatOpGetRegularizerObjects(self):
    model_stub = grouping_concat_model_stub
    with arg_scope(self._batch_norm_scope()):
      with tf.variable_scope(tf.get_variable_scope()):
        final_op = model_stub.build_model()

    # Instantiate OpRegularizerManager.
    op_handler_dict = self._default_op_handler_dict
    op_handler_dict['FusedBatchNormV3'] = StubBatchNormSourceOpHandler(
        model_stub)

    op_reg_manager = orm.OpRegularizerManager([final_op], op_handler_dict)
    self.assertEqual(
        op_reg_manager.get_regularizer(_get_op('conv1/Conv2D')),
        op_reg_manager.get_regularizer(_get_op('conv2/Conv2D')))
    self.assertEqual(
        op_reg_manager.get_regularizer(_get_op('conv3/Conv2D')),
        op_reg_manager.get_regularizer(_get_op('conv4/Conv2D'))) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:20,代碼來源:op_regularizer_manager_test.py

示例8: testGather

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testGather(self):
    gather_index = [5, 6, 7, 8, 9, 0, 1, 2, 3, 4]
    with arg_scope(self._batch_norm_scope()):
      inputs = tf.zeros([2, 4, 4, 3])
      c1 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv1')
      gather = tf.gather(c1, gather_index, axis=3)

    manager = orm.OpRegularizerManager(
        [gather.op], self._default_op_handler_dict)

    c1_reg = manager.get_regularizer(_get_op('conv1/Conv2D'))
    gather_reg = manager.get_regularizer(_get_op('GatherV2'))

    # Check regularizer indices.
    self.assertAllEqual(list(range(10)), c1_reg.regularization_vector)
    # This fails due to gather not being supported.  Once gather is supported,
    # this test can be enabled to verify that the regularization vector is
    # gathered in the same ordering as the tensor.
    # self.assertAllEqual(
    #     gather_index, gather_reg.regularization_vector)

    # This test shows that gather is not supported.  The regularization vector
    # has the same initial ordering after the gather op scrambled the
    # channels.  Remove this once gather is supported.
    self.assertAllEqual(list(range(10)), gather_reg.regularization_vector) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:27,代碼來源:op_regularizer_manager_test.py

示例9: testInit_AddConcat_AllOps

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testInit_AddConcat_AllOps(self):
    with arg_scope(self._batch_norm_scope()):
      inputs = tf.zeros([2, 4, 4, 3])
      c1 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv1')
      c2 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv2')
      add = c1 + c2
      c3 = layers.conv2d(add, num_outputs=10, kernel_size=3, scope='conv3')
      out = tf.identity(c3)
      concat = tf.concat([c1, c2], axis=3)
      c4 = layers.conv2d(concat, num_outputs=10, kernel_size=3, scope='conv4')

    manager = orm.OpRegularizerManager(
        [out.op], self._default_op_handler_dict, SumGroupingRegularizer)

    # Op c4 is not in the DFS path of out.  Verify that OpRegularizerManager
    # does not process c4.
    self.assertNotIn(c4.op, manager.ops)
    self.assertNotIn(concat.op, manager.ops) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:20,代碼來源:op_regularizer_manager_test.py

示例10: testInit_Blacklist

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testInit_Blacklist(self):
    with arg_scope(self._batch_norm_scope()):
      inputs = tf.zeros([2, 4, 4, 3])
      c1 = layers.conv2d(inputs, num_outputs=3, kernel_size=3, scope='conv1')
      c2 = layers.conv2d(c1, num_outputs=4, kernel_size=3, scope='conv2')
      c3 = layers.conv2d(c2, num_outputs=5, kernel_size=3, scope='conv3')

    # Verify c2 has a regularizer.
    manager = orm.OpRegularizerManager(
        [c3.op], self._default_op_handler_dict, SumGroupingRegularizer)
    self.assertIsNotNone(manager.get_regularizer(c2.op))

    # Verify c2 has None regularizer after blacklisting.
    manager = orm.OpRegularizerManager(
        [c3.op], self._default_op_handler_dict, SumGroupingRegularizer,
        regularizer_blacklist=['conv2'])
    self.assertIsNone(manager.get_regularizer(c2.op)) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:19,代碼來源:op_regularizer_manager_test.py

示例11: testInit_BlacklistGroup

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def testInit_BlacklistGroup(self):
    with arg_scope(self._batch_norm_scope()):
      inputs = tf.zeros([2, 4, 4, 3])
      c1 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv1')
      c2 = layers.conv2d(inputs, num_outputs=10, kernel_size=3, scope='conv2')
      add = c1 + c2
      c3 = layers.conv2d(add, num_outputs=10, kernel_size=3, scope='conv3')

    # Verify c2 has a regularizer.
    manager = orm.OpRegularizerManager(
        [c3.op], self._default_op_handler_dict, SumGroupingRegularizer)
    self.assertIsNotNone(manager.get_regularizer(c2.op))

    # Verify c2 has None regularizer after blacklisting c1 which is grouped.
    manager = orm.OpRegularizerManager(
        [c3.op], self._default_op_handler_dict, SumGroupingRegularizer,
        regularizer_blacklist=['conv1'])
    self.assertIsNone(manager.get_regularizer(c2.op)) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:20,代碼來源:op_regularizer_manager_test.py

示例12: _build_model

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def _build_model(self):
    with arg_scope([resnet_block, conv2d, max_pool2d, tanh],
                   layer_dict=self.layer_dict):
      self.R_x = self._build_refiner(self.normalized_x)
      self.denormalized_R_x = denormalize(self.R_x)

      self.D_y, self.D_y_logits = \
          self._build_discrim(self.normalized_y, name="D_y")
      self.D_R_x, self.D_R_x_logits = \
          self._build_discrim(self.R_x, name="D_R_x", reuse=True)
      self.D_R_x_history, self.D_R_x_history_logits = \
          self._build_discrim(self.R_x_history,
                              name="D_R_x_history", reuse=True)

      #self.estimate_outputs = self._build_estimation_network()
    self._build_loss() 
開發者ID:carpedm20,項目名稱:simulated-unsupervised-tensorflow,代碼行數:18,代碼來源:model.py

示例13: _localize

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def _localize(self, preprocessed_images):
    k = self._num_control_points
    conv_output = self._convnet.extract_features(preprocessed_images)[-1]
    batch_size = shape_utils.combined_static_and_dynamic_shape(conv_output)[0]
    conv_output = tf.reshape(conv_output, [batch_size, -1])
    with arg_scope(self._fc_hyperparams):
      fc1 = fully_connected(conv_output, 512)
      fc2_weights_initializer = tf.zeros_initializer()
      fc2_biases_initializer = tf.constant_initializer(self._init_bias)
      fc2 = fully_connected(0.1 * fc1, 2 * k,
        weights_initializer=fc2_weights_initializer,
        biases_initializer=fc2_biases_initializer,
        activation_fn=None,
        normalizer_fn=None)
      if self._summarize_activations:
        tf.summary.histogram('fc1', fc1)
        tf.summary.histogram('fc2', fc2)
    if self._activation == 'sigmoid':
      ctrl_pts = tf.sigmoid(fc2)
    elif self._activation == 'none':
      ctrl_pts = fc2
    else:
      raise ValueError('Unknown activation: {}'.format(self._activation))
    ctrl_pts = tf.reshape(ctrl_pts, [batch_size, k, 2])
    return ctrl_pts 
開發者ID:bgshih,項目名稱:aster,代碼行數:27,代碼來源:spatial_transformer.py

示例14: predict

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def predict(self, inputs, scope=None):
    with tf.variable_scope(scope, 'BidirectionalRnn', [inputs]) as scope:
      (output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(
        self._fw_cell, self._bw_cell, inputs, time_major=False, dtype=tf.float32)
      rnn_outputs = tf.concat([output_fw, output_bw], axis=2)

      filter_weights = lambda vars : [x for x in vars if x.op.name.endswith('kernel')]
      tf.contrib.layers.apply_regularization(
        self._rnn_regularizer,
        filter_weights(self._fw_cell.trainable_weights))
      tf.contrib.layers.apply_regularization(
        self._rnn_regularizer,
        filter_weights(self._bw_cell.trainable_weights))

      if self._num_output_units > 0:
        with arg_scope(self._fc_hyperparams):
          rnn_outputs = fully_connected(rnn_outputs, self._num_output_units, activation_fn=tf.nn.relu)

    if self._summarize_activations:
      max_time = rnn_outputs.get_shape()[1].value
      for t in range(max_time):
        activation_t = rnn_outputs[:,t,:]
        tf.summary.histogram('Activations/{}/Step_{}'.format(scope.name, t), activation_t)

    return rnn_outputs 
開發者ID:bgshih,項目名稱:aster,代碼行數:27,代碼來源:bidirectional_rnn.py

示例15: Batch_Normalization

# 需要導入模塊: from tensorflow.contrib import framework [as 別名]
# 或者: from tensorflow.contrib.framework import arg_scope [as 別名]
def Batch_Normalization(x, training, scope):
    with arg_scope([batch_norm],
                   scope=scope,
                   updates_collections=None,
                   decay=0.9,
                   center=True,
                   scale=True,
                   zero_debias_moving_mean=True) :
        return tf.cond(training,
                       lambda : batch_norm(inputs=x, is_training=training, reuse=None),
                       lambda : batch_norm(inputs=x, is_training=training, reuse=True)) 
開發者ID:taki0112,項目名稱:ResNeXt-Tensorflow,代碼行數:13,代碼來源:ResNeXt.py


注:本文中的tensorflow.contrib.framework.arg_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。