當前位置: 首頁>>代碼示例>>Python>>正文


Python distributions.Bernoulli方法代碼示例

本文整理匯總了Python中tensorflow.contrib.distributions.Bernoulli方法的典型用法代碼示例。如果您正苦於以下問題:Python distributions.Bernoulli方法的具體用法?Python distributions.Bernoulli怎麽用?Python distributions.Bernoulli使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.distributions的用法示例。


在下文中一共展示了distributions.Bernoulli方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def __init__(self, latent_dim, batch_size, encoder, decoder,
                 observation_dim=784,
                 learning_rate=1e-4,
                 optimizer=tf.train.RMSPropOptimizer,
                 observation_distribution="Bernoulli", # or Gaussian
                 observation_std=0.01):

        self._latent_dim = latent_dim
        self._batch_size = batch_size
        self._encode = encoder
        self._decode = decoder
        self._observation_dim = observation_dim
        self._learning_rate = learning_rate
        self._optimizer = optimizer
        self._observation_distribution = observation_distribution
        self._observation_std = observation_std
        self._build_graph() 
開發者ID:wuga214,項目名稱:IMPLEMENTATION_Variational-Auto-Encoder,代碼行數:19,代碼來源:vae.py

示例2: add_noise

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def add_noise(data, noise):
    noise_type = noise['noise_type']
    if noise_type in ['None', 'none', None]:
        return data

    with tf.name_scope('input_noise'):
        shape = tf.stack([s.value if s.value is not None else tf.shape(data)[i]
                         for i, s in enumerate(data.get_shape())])

        if noise_type == 'bitflip':
            noise_dist = dist.Bernoulli(probs=noise['prob'], dtype=data.dtype)
            n = noise_dist.sample(shape)
            corrupted = data + n - 2 * data * n  # hacky way of implementing (data XOR n)
        else:
            raise KeyError('Unknown noise_type "{}"'.format(noise_type))

        corrupted.set_shape(data.get_shape())
        return corrupted 
開發者ID:sjoerdvansteenkiste,項目名稱:Relational-NEM,代碼行數:20,代碼來源:nem.py

示例3: add_noise

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def add_noise(data, noise, dataset):
    noise_type = noise['noise_type']
    if noise_type in ['None', 'none', None]:
        return data
    if noise_type == 'data':
        noise_type = 'bitflip' if dataset['binary'] else 'masked_uniform'

    with tf.name_scope('input_noise'):
        shape = tf.stack([s.value if s.value is not None else tf.shape(data)[i]
                         for i, s in enumerate(data.get_shape())])

        if noise_type == 'bitflip':
            noise_dist = dist.Bernoulli(probs=noise['prob'], dtype=data.dtype)
            n = noise_dist.sample(shape)
            corrupted = data + n - 2 * data * n  # hacky way of implementing (data XOR n)
        elif noise_type == 'masked_uniform':
            noise_dist = dist.Uniform(low=0., high=1.)
            noise_uniform = noise_dist.sample(shape)

            # sample mask
            mask_dist = dist.Bernoulli(probs=noise['prob'], dtype=data.dtype)
            mask = mask_dist.sample(shape)

            # produce output
            corrupted = mask * noise_uniform + (1 - mask) * data
        else:
            raise KeyError('Unknown noise_type "{}"'.format(noise_type))

        corrupted.set_shape(data.get_shape())
        return corrupted 
開發者ID:sjoerdvansteenkiste,項目名稱:Neural-EM,代碼行數:32,代碼來源:nem.py

示例4: __init__

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def __init__(self, steps_probs):
        """

        :param steps_probs: tensor; Bernoulli success probabilities
        """
        self._steps_probs = steps_probs
        self._joint = bernoulli_to_modified_geometric(steps_probs)
        self._bernoulli = None 
開發者ID:akosiorek,項目名稱:attend_infer_repeat,代碼行數:10,代碼來源:prior.py

示例5: sample

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def sample(self, n=None):
        if self._bernoulli is None:
            self._bernoulli = Bernoulli(self._steps_probs)

        sample = self._bernoulli.sample(n)
        sample = tf.cumprod(sample, tf.rank(sample) - 1)
        sample = tf.reduce_sum(sample, -1)
        return sample 
開發者ID:akosiorek,項目名稱:attend_infer_repeat,代碼行數:10,代碼來源:prior.py

示例6: add_noise

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def add_noise(data, noise_prob, noise_type):
    if noise_type in ['None', 'none', None]:
        return data

    shape = tf.stack([s.value if s.value is not None else tf.shape(data)[i]
                     for i, s in enumerate(data.get_shape())])

    if noise_type == 'bitflip':
        noise_dist = dist.Bernoulli(probs=noise_prob, dtype=data.dtype)
        n = noise_dist.sample(shape)
        corrupted = data + n - 2 * data * n  # hacky way of implementing (data XOR n)
    elif noise_type == 'masked_uniform':
        noise_dist = dist.Uniform(low=0., high=1.)
        noise_uniform = noise_dist.sample(shape)

        # sample mask
        mask_dist = dist.Bernoulli(probs=noise_prob, dtype=data.dtype)
        mask = mask_dist.sample(shape)

        # produce output
        corrupted = mask * noise_uniform + (1 - mask) * data
    else:
        raise KeyError('Unknown noise_type "{}"'.format(noise_type))

    corrupted.set_shape(data.get_shape())
    return corrupted


# def set_up_optimizer(loss, optimizer, params, clip_gradients):
#     opt = {
#         'adam': tf.train.AdamOptimizer,
#         'sgd': tf.train.GradientDescentOptimizer,
#         'momentum': tf.train.MomentumOptimizer,
#         'adadelta': tf.train.AdadeltaOptimizer,
#         'adagrad': tf.train.AdagradOptimizer,
#         'rmsprop': tf.train.RMSPropOptimizer
#     }[optimizer](**params)
#
#     # optionally clip gradients by norm
#     grads_and_vars = opt.compute_gradients(loss)
#     if clip_gradients is not None:
#         grads_and_vars = [(tf.clip_by_norm(grad, clip_gradients), var)
#                           for grad, var in grads_and_vars]
#
#     return opt, opt.apply_gradients(grads_and_vars)


# -------------------------------- nem_model.py --------------------------------- 
開發者ID:e2crawfo,項目名稱:auto_yolo,代碼行數:50,代碼來源:nem.py

示例7: _build_graph

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def _build_graph(self):

        with tf.variable_scope('vae'):
            self.x = tf.placeholder(tf.float32, shape=[None, self._observation_dim])

            with tf.variable_scope('encoder'):
                encoded = self._encode(self.x, self._latent_dim)

            with tf.variable_scope('latent'):
                self.mean = encoded[:, :self._latent_dim]
                logvar = encoded[:, self._latent_dim:]
                stddev = tf.sqrt(tf.exp(logvar))
                epsilon = tf.random_normal([self._batch_size, self._latent_dim])
                self.z = self.mean + stddev * epsilon

            with tf.variable_scope('decoder'):
                decoded = self._decode(self.z, self._observation_dim)
                self.obs_mean = decoded
                if self._observation_distribution == 'Gaussian':
                    obs_epsilon = tf.random_normal([self._batch_size, self._observation_dim])
                    self.sample = self.obs_mean + self._observation_std * obs_epsilon
                else:
                    self.sample = Bernoulli(probs=self.obs_mean).sample()


            with tf.variable_scope('loss'):
                with tf.variable_scope('kl-divergence'):
                    kl = self._kl_diagnormal_stdnormal(self.mean, logvar)

                if self._observation_distribution == 'Gaussian':
                    with tf.variable_scope('gaussian'):
                        obj = self._gaussian_log_likelihood(self.x, self.obs_mean, self._observation_std)
                else:
                    with tf.variable_scope('bernoulli'):
                        obj = self._bernoulli_log_likelihood(self.x, self.obs_mean)

                self._loss = (kl + obj) / self._batch_size

            with tf.variable_scope('optimizer'):
                optimizer = tf.train.RMSPropOptimizer(learning_rate=self._learning_rate)
            with tf.variable_scope('training-step'):
                self._train = optimizer.minimize(self._loss)

            self._sesh = tf.Session()
            init = tf.global_variables_initializer()
            self._sesh.run(init) 
開發者ID:wuga214,項目名稱:IMPLEMENTATION_Variational-Auto-Encoder,代碼行數:48,代碼來源:vae.py

示例8: __init__

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def __init__(self, img_size, crop_size, n_appearance,
                 transition, input_encoder, glimpse_encoder, glimpse_decoder, transform_estimator, steps_predictor,
                 discrete_steps=True, canvas_init=None, explore_eps=None, debug=False):
        """Creates the cell

        :param img_size: int tuple, size of the image
        :param crop_size: int tuple, size of the attention glimpse
        :param n_appearance: number of latent units describing the "what"
        :param transition: an RNN cell for maintaining the internal hidden state
        :param input_encoder: callable, encodes the original input image before passing it into the transition
        :param glimpse_encoder: callable, encodes the glimpse into latent representation
        :param glimpse_decoder: callable, decodes the glimpse from latent representation
        :param transform_estimator: callabe, transforms the hidden state into parameters for the spatial transformer
        :param steps_predictor: callable, predicts whether to take a step
        :param discrete_steps: boolean, steps are samples from a Bernoulli distribution if True; if False, all steps are
         taken and are weighted by the step probability
        :param canvas_init: float or None, initial value for the reconstructed image. If None, the canvas is black. If
         float, the canvas starts with a given value, which is trainable.
        :param explore_eps: float or None; if float, it has to be \in (0., .5); step probability is clipped between
         `explore_eps` and (1 - `explore_eps)
        :param debug: boolean, adds checks for NaNs in the inputs to distributions
        """

        super(AIRCell, self).__init__(self.__class__.__name__)
        self._img_size = img_size
        self._n_pix = np.prod(self._img_size)
        self._crop_size = crop_size
        self._n_appearance = n_appearance
        self._transition = transition
        self._n_hidden = self._transition.output_size[0]

        self._sample_presence = discrete_steps
        self._explore_eps = explore_eps
        self._debug = debug

        with self._enter_variable_scope():
            self._canvas = tf.zeros(self._img_size, dtype=tf.float32)
            if canvas_init is not None:
                self._canvas_value = tf.get_variable('canvas_value', dtype=tf.float32, initializer=canvas_init)
                self._canvas += self._canvas_value

            transform_constraints = snt.AffineWarpConstraints.no_shear_2d()

            self._spatial_transformer = SpatialTransformer(img_size, crop_size, transform_constraints)
            self._inverse_transformer = SpatialTransformer(img_size, crop_size, transform_constraints, inverse=True)

            self._transform_estimator = transform_estimator(self._n_transform_param)
            self._input_encoder = input_encoder()
            self._glimpse_encoder = glimpse_encoder()
            self._glimpse_decoder = glimpse_decoder(crop_size)

            self._what_distrib = ParametrisedGaussian(n_appearance, scale_offset=0.5,
                                                      validate_args=self._debug, allow_nan_stats=not self._debug)

            self._steps_predictor = steps_predictor() 
開發者ID:akosiorek,項目名稱:attend_infer_repeat,代碼行數:57,代碼來源:cell.py

示例9: _build

# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def _build(self, inpt, state):
        """Input is unused; it's only to force a maximum number of steps"""

        img_flat, canvas_flat, what_code, where_code, hidden_state, presence = state

        img_inpt = img_flat
        img = tf.reshape(img_inpt, (-1,) + tuple(self._img_size))


        inpt_encoding = self._input_encoder(img)
        with tf.variable_scope('rnn_inpt'):
            hidden_output, hidden_state = self._transition(inpt_encoding, hidden_state)

        where_param = self._transform_estimator(hidden_output)
        where_distrib = NormalWithSoftplusScale(*where_param,
                                                validate_args=self._debug, allow_nan_stats=not self._debug)
        where_loc, where_scale = where_distrib.loc, where_distrib.scale
        where_code = where_distrib.sample()

        cropped = self._spatial_transformer(img, where_code)

        with tf.variable_scope('presence'):
            presence_prob = self._steps_predictor(hidden_output)

            if self._explore_eps is not None:
                presence_prob = self._explore_eps / 2 + (1 - self._explore_eps) * presence_prob

            if self._sample_presence:
                presence_distrib = Bernoulli(probs=presence_prob, dtype=tf.float32,
                                             validate_args=self._debug, allow_nan_stats=not self._debug)

                new_presence = presence_distrib.sample()
                presence *= new_presence

            else:
                presence = presence_prob

        what_params = self._glimpse_encoder(cropped)
        what_distrib = self._what_distrib(what_params)
        what_loc, what_scale = what_distrib.loc, what_distrib.scale
        what_code = what_distrib.sample()

        decoded = self._glimpse_decoder(what_code)
        inversed = self._inverse_transformer(decoded, where_code)

        with tf.variable_scope('rnn_outputs'):
            inversed_flat = tf.reshape(inversed, (-1, self._n_pix))

            canvas_flat += presence * inversed_flat
            decoded_flat = tf.reshape(decoded, (-1, np.prod(self._crop_size)))

        output = [canvas_flat, decoded_flat, what_code, what_loc, what_scale, where_code, where_loc, where_scale,
                  presence_prob, presence]
        state = [img_flat, canvas_flat,
                 what_code, where_code, hidden_state, presence]
        return output, state 
開發者ID:akosiorek,項目名稱:attend_infer_repeat,代碼行數:58,代碼來源:cell.py


注:本文中的tensorflow.contrib.distributions.Bernoulli方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。