本文整理匯總了Python中tensorflow.contrib.distributions.Bernoulli方法的典型用法代碼示例。如果您正苦於以下問題:Python distributions.Bernoulli方法的具體用法?Python distributions.Bernoulli怎麽用?Python distributions.Bernoulli使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.contrib.distributions
的用法示例。
在下文中一共展示了distributions.Bernoulli方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def __init__(self, latent_dim, batch_size, encoder, decoder,
observation_dim=784,
learning_rate=1e-4,
optimizer=tf.train.RMSPropOptimizer,
observation_distribution="Bernoulli", # or Gaussian
observation_std=0.01):
self._latent_dim = latent_dim
self._batch_size = batch_size
self._encode = encoder
self._decode = decoder
self._observation_dim = observation_dim
self._learning_rate = learning_rate
self._optimizer = optimizer
self._observation_distribution = observation_distribution
self._observation_std = observation_std
self._build_graph()
示例2: add_noise
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def add_noise(data, noise):
noise_type = noise['noise_type']
if noise_type in ['None', 'none', None]:
return data
with tf.name_scope('input_noise'):
shape = tf.stack([s.value if s.value is not None else tf.shape(data)[i]
for i, s in enumerate(data.get_shape())])
if noise_type == 'bitflip':
noise_dist = dist.Bernoulli(probs=noise['prob'], dtype=data.dtype)
n = noise_dist.sample(shape)
corrupted = data + n - 2 * data * n # hacky way of implementing (data XOR n)
else:
raise KeyError('Unknown noise_type "{}"'.format(noise_type))
corrupted.set_shape(data.get_shape())
return corrupted
示例3: add_noise
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def add_noise(data, noise, dataset):
noise_type = noise['noise_type']
if noise_type in ['None', 'none', None]:
return data
if noise_type == 'data':
noise_type = 'bitflip' if dataset['binary'] else 'masked_uniform'
with tf.name_scope('input_noise'):
shape = tf.stack([s.value if s.value is not None else tf.shape(data)[i]
for i, s in enumerate(data.get_shape())])
if noise_type == 'bitflip':
noise_dist = dist.Bernoulli(probs=noise['prob'], dtype=data.dtype)
n = noise_dist.sample(shape)
corrupted = data + n - 2 * data * n # hacky way of implementing (data XOR n)
elif noise_type == 'masked_uniform':
noise_dist = dist.Uniform(low=0., high=1.)
noise_uniform = noise_dist.sample(shape)
# sample mask
mask_dist = dist.Bernoulli(probs=noise['prob'], dtype=data.dtype)
mask = mask_dist.sample(shape)
# produce output
corrupted = mask * noise_uniform + (1 - mask) * data
else:
raise KeyError('Unknown noise_type "{}"'.format(noise_type))
corrupted.set_shape(data.get_shape())
return corrupted
示例4: __init__
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def __init__(self, steps_probs):
"""
:param steps_probs: tensor; Bernoulli success probabilities
"""
self._steps_probs = steps_probs
self._joint = bernoulli_to_modified_geometric(steps_probs)
self._bernoulli = None
示例5: sample
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def sample(self, n=None):
if self._bernoulli is None:
self._bernoulli = Bernoulli(self._steps_probs)
sample = self._bernoulli.sample(n)
sample = tf.cumprod(sample, tf.rank(sample) - 1)
sample = tf.reduce_sum(sample, -1)
return sample
示例6: add_noise
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def add_noise(data, noise_prob, noise_type):
if noise_type in ['None', 'none', None]:
return data
shape = tf.stack([s.value if s.value is not None else tf.shape(data)[i]
for i, s in enumerate(data.get_shape())])
if noise_type == 'bitflip':
noise_dist = dist.Bernoulli(probs=noise_prob, dtype=data.dtype)
n = noise_dist.sample(shape)
corrupted = data + n - 2 * data * n # hacky way of implementing (data XOR n)
elif noise_type == 'masked_uniform':
noise_dist = dist.Uniform(low=0., high=1.)
noise_uniform = noise_dist.sample(shape)
# sample mask
mask_dist = dist.Bernoulli(probs=noise_prob, dtype=data.dtype)
mask = mask_dist.sample(shape)
# produce output
corrupted = mask * noise_uniform + (1 - mask) * data
else:
raise KeyError('Unknown noise_type "{}"'.format(noise_type))
corrupted.set_shape(data.get_shape())
return corrupted
# def set_up_optimizer(loss, optimizer, params, clip_gradients):
# opt = {
# 'adam': tf.train.AdamOptimizer,
# 'sgd': tf.train.GradientDescentOptimizer,
# 'momentum': tf.train.MomentumOptimizer,
# 'adadelta': tf.train.AdadeltaOptimizer,
# 'adagrad': tf.train.AdagradOptimizer,
# 'rmsprop': tf.train.RMSPropOptimizer
# }[optimizer](**params)
#
# # optionally clip gradients by norm
# grads_and_vars = opt.compute_gradients(loss)
# if clip_gradients is not None:
# grads_and_vars = [(tf.clip_by_norm(grad, clip_gradients), var)
# for grad, var in grads_and_vars]
#
# return opt, opt.apply_gradients(grads_and_vars)
# -------------------------------- nem_model.py ---------------------------------
示例7: _build_graph
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def _build_graph(self):
with tf.variable_scope('vae'):
self.x = tf.placeholder(tf.float32, shape=[None, self._observation_dim])
with tf.variable_scope('encoder'):
encoded = self._encode(self.x, self._latent_dim)
with tf.variable_scope('latent'):
self.mean = encoded[:, :self._latent_dim]
logvar = encoded[:, self._latent_dim:]
stddev = tf.sqrt(tf.exp(logvar))
epsilon = tf.random_normal([self._batch_size, self._latent_dim])
self.z = self.mean + stddev * epsilon
with tf.variable_scope('decoder'):
decoded = self._decode(self.z, self._observation_dim)
self.obs_mean = decoded
if self._observation_distribution == 'Gaussian':
obs_epsilon = tf.random_normal([self._batch_size, self._observation_dim])
self.sample = self.obs_mean + self._observation_std * obs_epsilon
else:
self.sample = Bernoulli(probs=self.obs_mean).sample()
with tf.variable_scope('loss'):
with tf.variable_scope('kl-divergence'):
kl = self._kl_diagnormal_stdnormal(self.mean, logvar)
if self._observation_distribution == 'Gaussian':
with tf.variable_scope('gaussian'):
obj = self._gaussian_log_likelihood(self.x, self.obs_mean, self._observation_std)
else:
with tf.variable_scope('bernoulli'):
obj = self._bernoulli_log_likelihood(self.x, self.obs_mean)
self._loss = (kl + obj) / self._batch_size
with tf.variable_scope('optimizer'):
optimizer = tf.train.RMSPropOptimizer(learning_rate=self._learning_rate)
with tf.variable_scope('training-step'):
self._train = optimizer.minimize(self._loss)
self._sesh = tf.Session()
init = tf.global_variables_initializer()
self._sesh.run(init)
示例8: __init__
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def __init__(self, img_size, crop_size, n_appearance,
transition, input_encoder, glimpse_encoder, glimpse_decoder, transform_estimator, steps_predictor,
discrete_steps=True, canvas_init=None, explore_eps=None, debug=False):
"""Creates the cell
:param img_size: int tuple, size of the image
:param crop_size: int tuple, size of the attention glimpse
:param n_appearance: number of latent units describing the "what"
:param transition: an RNN cell for maintaining the internal hidden state
:param input_encoder: callable, encodes the original input image before passing it into the transition
:param glimpse_encoder: callable, encodes the glimpse into latent representation
:param glimpse_decoder: callable, decodes the glimpse from latent representation
:param transform_estimator: callabe, transforms the hidden state into parameters for the spatial transformer
:param steps_predictor: callable, predicts whether to take a step
:param discrete_steps: boolean, steps are samples from a Bernoulli distribution if True; if False, all steps are
taken and are weighted by the step probability
:param canvas_init: float or None, initial value for the reconstructed image. If None, the canvas is black. If
float, the canvas starts with a given value, which is trainable.
:param explore_eps: float or None; if float, it has to be \in (0., .5); step probability is clipped between
`explore_eps` and (1 - `explore_eps)
:param debug: boolean, adds checks for NaNs in the inputs to distributions
"""
super(AIRCell, self).__init__(self.__class__.__name__)
self._img_size = img_size
self._n_pix = np.prod(self._img_size)
self._crop_size = crop_size
self._n_appearance = n_appearance
self._transition = transition
self._n_hidden = self._transition.output_size[0]
self._sample_presence = discrete_steps
self._explore_eps = explore_eps
self._debug = debug
with self._enter_variable_scope():
self._canvas = tf.zeros(self._img_size, dtype=tf.float32)
if canvas_init is not None:
self._canvas_value = tf.get_variable('canvas_value', dtype=tf.float32, initializer=canvas_init)
self._canvas += self._canvas_value
transform_constraints = snt.AffineWarpConstraints.no_shear_2d()
self._spatial_transformer = SpatialTransformer(img_size, crop_size, transform_constraints)
self._inverse_transformer = SpatialTransformer(img_size, crop_size, transform_constraints, inverse=True)
self._transform_estimator = transform_estimator(self._n_transform_param)
self._input_encoder = input_encoder()
self._glimpse_encoder = glimpse_encoder()
self._glimpse_decoder = glimpse_decoder(crop_size)
self._what_distrib = ParametrisedGaussian(n_appearance, scale_offset=0.5,
validate_args=self._debug, allow_nan_stats=not self._debug)
self._steps_predictor = steps_predictor()
示例9: _build
# 需要導入模塊: from tensorflow.contrib import distributions [as 別名]
# 或者: from tensorflow.contrib.distributions import Bernoulli [as 別名]
def _build(self, inpt, state):
"""Input is unused; it's only to force a maximum number of steps"""
img_flat, canvas_flat, what_code, where_code, hidden_state, presence = state
img_inpt = img_flat
img = tf.reshape(img_inpt, (-1,) + tuple(self._img_size))
inpt_encoding = self._input_encoder(img)
with tf.variable_scope('rnn_inpt'):
hidden_output, hidden_state = self._transition(inpt_encoding, hidden_state)
where_param = self._transform_estimator(hidden_output)
where_distrib = NormalWithSoftplusScale(*where_param,
validate_args=self._debug, allow_nan_stats=not self._debug)
where_loc, where_scale = where_distrib.loc, where_distrib.scale
where_code = where_distrib.sample()
cropped = self._spatial_transformer(img, where_code)
with tf.variable_scope('presence'):
presence_prob = self._steps_predictor(hidden_output)
if self._explore_eps is not None:
presence_prob = self._explore_eps / 2 + (1 - self._explore_eps) * presence_prob
if self._sample_presence:
presence_distrib = Bernoulli(probs=presence_prob, dtype=tf.float32,
validate_args=self._debug, allow_nan_stats=not self._debug)
new_presence = presence_distrib.sample()
presence *= new_presence
else:
presence = presence_prob
what_params = self._glimpse_encoder(cropped)
what_distrib = self._what_distrib(what_params)
what_loc, what_scale = what_distrib.loc, what_distrib.scale
what_code = what_distrib.sample()
decoded = self._glimpse_decoder(what_code)
inversed = self._inverse_transformer(decoded, where_code)
with tf.variable_scope('rnn_outputs'):
inversed_flat = tf.reshape(inversed, (-1, self._n_pix))
canvas_flat += presence * inversed_flat
decoded_flat = tf.reshape(decoded, (-1, np.prod(self._crop_size)))
output = [canvas_flat, decoded_flat, what_code, what_loc, what_scale, where_code, where_loc, where_scale,
presence_prob, presence]
state = [img_flat, canvas_flat,
what_code, where_code, hidden_state, presence]
return output, state