當前位置: 首頁>>代碼示例>>Python>>正文


Python data.shuffle_and_repeat方法代碼示例

本文整理匯總了Python中tensorflow.contrib.data.shuffle_and_repeat方法的典型用法代碼示例。如果您正苦於以下問題:Python data.shuffle_and_repeat方法的具體用法?Python data.shuffle_and_repeat怎麽用?Python data.shuffle_and_repeat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.contrib.data的用法示例。


在下文中一共展示了data.shuffle_and_repeat方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_model

# 需要導入模塊: from tensorflow.contrib import data [as 別名]
# 或者: from tensorflow.contrib.data import shuffle_and_repeat [as 別名]
def build_model(self):
        """ Graph Input """
        # images
        Image_Data_Class = ImageData(self.img_size, self.c_dim, self.custom_dataset)
        inputs = tf.data.Dataset.from_tensor_slices(self.data)

        gpu_device = '/gpu:0'
        inputs = inputs.\
            apply(shuffle_and_repeat(self.dataset_num)).\
            apply(map_and_batch(Image_Data_Class.image_processing, self.batch_size, num_parallel_batches=16, drop_remainder=True)).\
            apply(prefetch_to_device(gpu_device, self.batch_size))

        inputs_iterator = inputs.make_one_shot_iterator()

        self.inputs = inputs_iterator.get_next()

        # noises
        self.z = tf.random_normal(shape=[self.batch_size, 1, 1, self.z_dim], name='random_z')

        """ Loss Function """
        # output of D for real images
        real_logits = self.discriminator(self.inputs)

        # output of D for fake images
        fake_images = self.generator(self.z)
        fake_logits = self.discriminator(fake_images, reuse=True)

        if self.gan_type.__contains__('wgan') or self.gan_type == 'dragan':
            GP = self.gradient_penalty(real=self.inputs, fake=fake_images)
        else:
            GP = 0

        # get loss for discriminator
        self.d_loss = discriminator_loss(self.gan_type, real=real_logits, fake=fake_logits, moment=self.moment) + GP

        # get loss for generator
        self.g_loss = generator_loss(self.gan_type, fake=fake_logits, moment=self.moment)

        """ Training """
        # divide trainable variables into a group for D and a group for G
        t_vars = tf.trainable_variables()
        d_vars = [var for var in t_vars if 'discriminator' in var.name]
        g_vars = [var for var in t_vars if 'generator' in var.name]

        # optimizers

        with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) :
            self.d_optim = tf.train.AdamOptimizer(self.d_learning_rate, beta1=self.beta1, beta2=self.beta2).minimize(self.d_loss, var_list=d_vars)
            self.g_optim = tf.train.AdamOptimizer(self.g_learning_rate, beta1=self.beta1, beta2=self.beta2).minimize(self.g_loss, var_list=g_vars)

        """" Testing """
        # for test
        self.fake_images = self.generator(self.z, is_training=False, reuse=True)

        """ Summary """
        self.d_sum = tf.summary.scalar("d_loss", self.d_loss)
        self.g_sum = tf.summary.scalar("g_loss", self.g_loss)

    ##################################################################################
    # Train
    ################################################################################## 
開發者ID:taki0112,項目名稱:SphereGAN-Tensorflow,代碼行數:63,代碼來源:SphereGAN.py

示例2: build_model

# 需要導入模塊: from tensorflow.contrib import data [as 別名]
# 或者: from tensorflow.contrib.data import shuffle_and_repeat [as 別名]
def build_model(self):
        """ Graph Input """
        # images
        if self.custom_dataset :
            Image_Data_Class = ImageData(self.img_size, self.c_dim)
            inputs = tf.data.Dataset.from_tensor_slices(self.data)

            gpu_device = '/gpu:0'
            inputs = inputs.apply(shuffle_and_repeat(self.dataset_num)).apply(map_and_batch(Image_Data_Class.image_processing, self.batch_size, num_parallel_batches=16, drop_remainder=True)).apply(prefetch_to_device(gpu_device, self.batch_size))

            inputs_iterator = inputs.make_one_shot_iterator()

            self.inputs = inputs_iterator.get_next()

        else :
            self.inputs = tf.placeholder(tf.float32, [self.batch_size, self.img_size, self.img_size, self.c_dim], name='real_images')

        # noises
        self.z = tf.placeholder(tf.float32, [self.batch_size, 1, 1, self.z_dim], name='z')

        """ Loss Function """
        # output of D for real images
        real_logits = self.discriminator(self.inputs)

        # output of D for fake images
        fake_images = self.generator(self.z)
        fake_logits = self.discriminator(fake_images, reuse=True)

        if self.gan_type.__contains__('wgan') or self.gan_type == 'dragan' :
            GP = self.gradient_penalty(real=self.inputs, fake=fake_images)
        else :
            GP = 0

        # get loss for discriminator
        self.d_loss = discriminator_loss(self.gan_type, real=real_logits, fake=fake_logits) + GP

        # get loss for generator
        self.g_loss = generator_loss(self.gan_type, fake=fake_logits)

        """ Training """
        # divide trainable variables into a group for D and a group for G
        t_vars = tf.trainable_variables()
        d_vars = [var for var in t_vars if 'discriminator' in var.name]
        g_vars = [var for var in t_vars if 'generator' in var.name]

        # optimizers
        self.d_optim = tf.train.AdamOptimizer(self.d_learning_rate, beta1=self.beta1, beta2=self.beta2).minimize(self.d_loss, var_list=d_vars)
        self.g_optim = tf.train.AdamOptimizer(self.g_learning_rate, beta1=self.beta1, beta2=self.beta2).minimize(self.g_loss, var_list=g_vars)

        """" Testing """
        # for test
        self.fake_images = self.generator(self.z, is_training=False, reuse=True)

        """ Summary """
        self.d_sum = tf.summary.scalar("d_loss", self.d_loss)
        self.g_sum = tf.summary.scalar("g_loss", self.g_loss)

    ##################################################################################
    # Train
    ################################################################################## 
開發者ID:taki0112,項目名稱:Self-Attention-GAN-Tensorflow,代碼行數:62,代碼來源:SAGAN.py

示例3: build_model

# 需要導入模塊: from tensorflow.contrib import data [as 別名]
# 或者: from tensorflow.contrib.data import shuffle_and_repeat [as 別名]
def build_model(self):
        """ Graph Input """
        # images
        if self.custom_dataset :
            Image_Data_Class = ImageData(self.img_size, self.c_dim)
            inputs = tf.data.Dataset.from_tensor_slices(self.data)

            gpu_device = '/gpu:0'
            inputs = inputs.apply(shuffle_and_repeat(self.dataset_num)).apply(map_and_batch(Image_Data_Class.image_processing, self.batch_size, num_parallel_batches=16, drop_remainder=True)).apply(prefetch_to_device(gpu_device, self.batch_size))

            inputs_iterator = inputs.make_one_shot_iterator()

            self.inputs = inputs_iterator.get_next()

        else :
            self.inputs = tf.placeholder(tf.float32, [self.batch_size, self.img_size, self.img_size, self.c_dim], name='real_images')

        # noises
        self.z = tf.placeholder(tf.float32, [self.batch_size, 1, 1, self.z_dim], name='z')

        """ Loss Function """
        # output of D for real images
        real_logits = self.discriminator(self.inputs)

        # output of D for fake images
        fake_images = self.generator(self.z)
        fake_logits = self.discriminator(fake_images, reuse=True)

        if self.gan_type.__contains__('gp') or self.gan_type.__contains__('lp') or self.gan_type.__contains__('dragan') :
            GP = self.gradient_penalty(real=self.inputs, fake=fake_images)
        else :
            GP = 0

        # get loss for discriminator
        self.d_loss = discriminator_loss(self.Ra, self.gan_type, real=real_logits, fake=fake_logits) + GP

        # get loss for generator
        self.g_loss = generator_loss(self.Ra, self.gan_type, real=real_logits, fake=fake_logits)

        """ Training """
        # divide trainable variables into a group for D and a group for G
        t_vars = tf.trainable_variables()
        d_vars = [var for var in t_vars if 'discriminator' in var.name]
        g_vars = [var for var in t_vars if 'generator' in var.name]

        # optimizers
        self.d_optim = tf.train.AdamOptimizer(self.d_learning_rate, beta1=self.beta1, beta2=self.beta2).minimize(self.d_loss, var_list=d_vars)
        self.g_optim = tf.train.AdamOptimizer(self.g_learning_rate, beta1=self.beta1, beta2=self.beta2).minimize(self.g_loss, var_list=g_vars)

        """" Testing """
        # for test
        self.fake_images = self.generator(self.z, is_training=False, reuse=True)

        """ Summary """
        self.d_sum = tf.summary.scalar("d_loss", self.d_loss)
        self.g_sum = tf.summary.scalar("g_loss", self.g_loss)

    ##################################################################################
    # Train
    ################################################################################## 
開發者ID:taki0112,項目名稱:RelativisticGAN-Tensorflow,代碼行數:62,代碼來源:RaGAN.py


注:本文中的tensorflow.contrib.data.shuffle_and_repeat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。