當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.container方法代碼示例

本文整理匯總了Python中tensorflow.container方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.container方法的具體用法?Python tensorflow.container怎麽用?Python tensorflow.container使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.container方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_train_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def create_train_model(model_creator, hparams, data_dir):
    """Create train graph, model, and iterator."""
    train_data_path = []
    for root, _, name in os.walk(os.path.join(data_dir, 'train_data')):
        for x in name:
            if x.split('.')[-1] == 'mat':
                train_data_path.append(os.path.join(root, x))
    assert len(train_data_path) == 1
    train_data = scio.loadmat(*train_data_path)['data']
    assert hparams.src_len == hparams.tgt_len == train_data.shape[1]
    graph = tf.Graph()

    with graph.as_default(), tf.container("train"):
        # channels: [features, SBP, DBP, MBP]
        train_src_data = train_data[:, :, 0:hparams.src_feature_size]
        train_tgt_data = train_data[:, :, hparams.src_feature_size:hparams.src_feature_size + hparams.tgt_feature_size]
        src_dataset = tf.data.Dataset.from_tensor_slices(train_src_data)
        tgt_dataset = tf.data.Dataset.from_tensor_slices(train_tgt_data)
        iterator = get_iterator(src_dataset, tgt_dataset, batch_size=hparams.batch_size,
                                random_seed=hparams.random_seed, is_train=True)
        model = model_creator(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.TRAIN)
    return TrainModel(graph=graph, model=model, iterator=iterator) 
開發者ID:psu1,項目名稱:DeepRNN,代碼行數:24,代碼來源:process.py

示例2: create_eval_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def create_eval_model(model_creator, hparams, data_dir):
    """Create eval graph, model and iterator."""
    eval_data_path = []
    for root, _, name in os.walk(os.path.join(data_dir, 'eval_data')):
        for x in name:
            if x.split('.')[-1] == 'mat':
                eval_data_path.append(os.path.join(root, x))
    assert len(eval_data_path) == 1
    eval_data = scio.loadmat(*eval_data_path)['data']
    data_mean, data_std = load_data_mean_std(hparams, data_dir)
    batch_size = eval_data.shape[0]
    graph = tf.Graph()

    with graph.as_default(), tf.container("eval"):
        eval_src_data = eval_data[:, :, 0:hparams.src_feature_size]
        # channels: [features, SBP, DBP, MBP]
        eval_tgt_data = eval_data[:, :, hparams.src_feature_size:hparams.src_feature_size + hparams.tgt_feature_size]
        src_dataset = tf.data.Dataset.from_tensor_slices(eval_src_data)
        tgt_dataset = tf.data.Dataset.from_tensor_slices(eval_tgt_data)
        iterator = get_iterator(src_dataset, tgt_dataset, batch_size=batch_size,
                                random_seed=hparams.random_seed, is_train=False)
        model = model_creator(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.EVAL)
    return EvalModel(graph=graph, model=model, iterator=iterator, data_mean=data_mean, data_std=data_std) 
開發者ID:psu1,項目名稱:DeepRNN,代碼行數:25,代碼來源:process.py

示例3: testContainer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testContainer(self):
    with tf.Graph().as_default():
      v0 = tf.Variable([0])
      with tf.container("l1"):
        v1 = tf.Variable([1])
        with tf.container("l2"):
          v2 = tf.Variable([2])
          special_v = gen_state_ops._variable(shape=[1], dtype=tf.float32, 
              name="VariableInL3", container="l3", shared_name="")
        v3 = tf.Variable([3])
      v4 = tf.Variable([4])
    self.assertEqual(tf.compat.as_bytes(""), v0.op.get_attr("container"))
    self.assertEqual(tf.compat.as_bytes("l1"), v1.op.get_attr("container"))
    self.assertEqual(tf.compat.as_bytes("l2"), v2.op.get_attr("container"))
    self.assertEqual(tf.compat.as_bytes("l3"),
                     special_v.op.get_attr("container"))
    self.assertEqual(tf.compat.as_bytes("l1"), v3.op.get_attr("container"))
    self.assertEqual(tf.compat.as_bytes(""), v4.op.get_attr("container")) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:variables_test.py

示例4: testConstructorWithShapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testConstructorWithShapes(self):
    with tf.Graph().as_default():
      q = tf.FIFOQueue(5, (tf.int32, tf.float32),
                       shapes=(tf.TensorShape([1, 1, 2, 3]),
                               tf.TensorShape([5, 8])), name="Q")
    self.assertTrue(isinstance(q.queue_ref, tf.Tensor))
    self.assertEquals(tf.string_ref, q.queue_ref.dtype)
    self.assertProtoEquals("""
      name:'Q' op:'FIFOQueue'
      attr { key: 'component_types' value { list {
        type: DT_INT32 type : DT_FLOAT
      } } }
      attr { key: 'shapes' value { list {
        shape { dim { size: 1 }
                dim { size: 1 }
                dim { size: 2 }
                dim { size: 3 } }
        shape { dim { size: 5 }
                dim { size: 8 } }
      } } }
      attr { key: 'capacity' value { i: 5 } }
      attr { key: 'container' value { s: '' } }
      attr { key: 'shared_name' value { s: '' } }
      """, q.queue_ref.op.node_def) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:fifo_queue_test.py

示例5: testConstructor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testConstructor(self):
    with tf.Graph().as_default():
      q = tf.FIFOQueue(5, (tf.int32, tf.float32), names=("i", "j"),
                       shared_name="foo", name="Q")
    self.assertTrue(isinstance(q.queue_ref, tf.Tensor))
    self.assertEquals(tf.string_ref, q.queue_ref.dtype)
    self.assertProtoEquals("""
      name:'Q' op:'FIFOQueue'
      attr { key: 'component_types' value { list {
        type: DT_INT32 type : DT_FLOAT
      } } }
      attr { key: 'shapes' value { list {} } }
      attr { key: 'capacity' value { i: 5 } }
      attr { key: 'container' value { s: '' } }
      attr { key: 'shared_name' value { s: 'foo' } }
      """, q.queue_ref.op.node_def)
    self.assertEqual(["i", "j"], q.names) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:fifo_queue_test.py

示例6: testMultipleContainers

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testMultipleContainers(self):
    with tf.container("test0"):
      v0 = tf.Variable(1.0, name="v0")
    with tf.container("test1"):
      v1 = tf.Variable(2.0, name="v0")
    server = tf.train.Server.create_local_server()
    sess = tf.Session(server.target)
    sess.run(tf.global_variables_initializer())
    self.assertAllEqual(1.0, sess.run(v0))
    self.assertAllEqual(2.0, sess.run(v1))

    # Resets container. Session aborts.
    tf.Session.reset(server.target, ["test0"])
    with self.assertRaises(tf.errors.AbortedError):
      sess.run(v1)

    # Connects to the same target. Device memory for the v0 would have
    # been released, so it will be uninitialized. But v1 should still
    # be valid.
    sess = tf.Session(server.target)
    with self.assertRaises(tf.errors.FailedPreconditionError):
      sess.run(v0)
    self.assertAllEqual(2.0, sess.run(v1))

  # Verifies various reset failures. 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:server_lib_test.py

示例7: create_infer_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def create_infer_model(model_creator, hparams, infer_data, batch_size):
    """Create inference model."""
    graph = tf.Graph()

    with graph.as_default(), tf.container("infer"):
        infer_src_data = infer_data[:, :, 0:hparams.src_feature_size]
        # channels:[features, SBP, SBP, MBP]
        infer_tgt_data = infer_data[:, :, hparams.src_feature_size:hparams.src_feature_size + hparams.tgt_feature_size]
        src_dataset = tf.data.Dataset.from_tensor_slices(infer_src_data)
        tgt_dataset = tf.data.Dataset.from_tensor_slices(infer_tgt_data)
        iterator = get_iterator(src_dataset, tgt_dataset, batch_size=batch_size,
                                random_seed=hparams.random_seed, is_train=False)
        model = model_creator(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER)
    return InferModel(graph=graph, model=model, iterator=iterator) 
開發者ID:psu1,項目名稱:DeepRNN,代碼行數:16,代碼來源:process.py

示例8: create_eval_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def create_eval_model(model_creator, hparams, scope=None, extra_args=None):
  """Create train graph, model, src/tgt file holders, and iterator."""
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file
  graph = tf.Graph()

  with graph.as_default(), tf.container(scope or "eval"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
    tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
    src_dataset = tf.contrib.data.TextLineDataset(src_file_placeholder)
    tgt_dataset = tf.contrib.data.TextLineDataset(tgt_file_placeholder)
    iterator = iterator_utils.get_iterator(
        src_dataset,
        tgt_dataset,
        src_vocab_table,
        tgt_vocab_table,
        hparams.batch_size,
        sos=hparams.sos,
        eos=hparams.eos,
        source_reverse=hparams.source_reverse,
        random_seed=hparams.random_seed,
        num_buckets=hparams.num_buckets,
        src_max_len=hparams.src_max_len_infer,
        tgt_max_len=hparams.tgt_max_len_infer)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.EVAL,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return EvalModel(
      graph=graph,
      model=model,
      src_file_placeholder=src_file_placeholder,
      tgt_file_placeholder=tgt_file_placeholder,
      iterator=iterator) 
開發者ID:steveash,項目名稱:NETransliteration-COLING2018,代碼行數:42,代碼來源:model_helper.py

示例9: create_infer_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def create_infer_model(model_creator, hparams, scope=None, extra_args=None):
  """Create inference model."""
  graph = tf.Graph()
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file

  with graph.as_default(), tf.container(scope or "infer"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
        tgt_vocab_file, default_value=vocab_utils.UNK)

    src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
    batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)

    src_dataset = tf.contrib.data.Dataset.from_tensor_slices(
        src_placeholder)
    iterator = iterator_utils.get_infer_iterator(
        src_dataset,
        src_vocab_table,
        batch_size=batch_size_placeholder,
        eos=hparams.eos,
        source_reverse=hparams.source_reverse,
        src_max_len=hparams.src_max_len_infer)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.INFER,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        reverse_target_vocab_table=reverse_tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return InferModel(
      graph=graph,
      model=model,
      src_placeholder=src_placeholder,
      batch_size_placeholder=batch_size_placeholder,
      iterator=iterator) 
開發者ID:steveash,項目名稱:NETransliteration-COLING2018,代碼行數:41,代碼來源:model_helper.py

示例10: create_eval_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def create_eval_model(model_creator, hparams, scope=None, extra_args=None):
  """Create train graph, model, src/tgt file holders, and iterator."""
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file
  graph = tf.Graph()

  with graph.as_default(), tf.container(scope or "eval"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
    tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
    src_dataset = tf.data.TextLineDataset(src_file_placeholder)
    tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder)
    with tf.device('CPU:0'):
      iterator = iterator_utils.get_iterator(
        src_dataset,
        tgt_dataset,
        src_vocab_table,
        tgt_vocab_table,
        hparams.batch_size,
        sos=hparams.sos,
        eos=hparams.eos,
        random_seed=hparams.random_seed,
        num_buckets=hparams.num_buckets,
        src_max_len=hparams.src_max_len_infer,
        tgt_max_len=hparams.tgt_max_len_infer)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.EVAL,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return EvalModel(
      graph=graph,
      model=model,
      src_file_placeholder=src_file_placeholder,
      tgt_file_placeholder=tgt_file_placeholder,
      iterator=iterator) 
開發者ID:snuspl,項目名稱:parallax,代碼行數:42,代碼來源:model_helper.py

示例11: create_infer_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def create_infer_model(model_creator, hparams, scope=None, extra_args=None):
  """Create inference model."""
  graph = tf.Graph()
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file

  with graph.as_default(), tf.container(scope or "infer"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
        tgt_vocab_file, default_value=vocab_utils.UNK)

    src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
    batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)

    src_dataset = tf.data.Dataset.from_tensor_slices(
        src_placeholder)
    iterator = iterator_utils.get_infer_iterator(
        src_dataset,
        src_vocab_table,
        batch_size=batch_size_placeholder,
        eos=hparams.eos,
        src_max_len=hparams.src_max_len_infer)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.INFER,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        reverse_target_vocab_table=reverse_tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return InferModel(
      graph=graph,
      model=model,
      src_placeholder=src_placeholder,
      batch_size_placeholder=batch_size_placeholder,
      iterator=iterator) 
開發者ID:snuspl,項目名稱:parallax,代碼行數:40,代碼來源:model_helper.py

示例12: testMultiQueueConstructor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testMultiQueueConstructor(self):
    with tf.Graph().as_default():
      q = tf.FIFOQueue(5, (tf.int32, tf.float32), shared_name="foo", name="Q")
    self.assertTrue(isinstance(q.queue_ref, tf.Tensor))
    self.assertEquals(tf.string_ref, q.queue_ref.dtype)
    self.assertProtoEquals("""
      name:'Q' op:'FIFOQueue'
      attr { key: 'component_types' value { list {
        type: DT_INT32 type : DT_FLOAT
      } } }
      attr { key: 'shapes' value { list {} } }
      attr { key: 'capacity' value { i: 5 } }
      attr { key: 'container' value { s: '' } }
      attr { key: 'shared_name' value { s: 'foo' } }
      """, q.queue_ref.op.node_def) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:fifo_queue_test.py

示例13: testDequeueWithTimeout

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testDequeueWithTimeout(self):
    with self.test_session(
        config=tf.ConfigProto(operation_timeout_in_ms=20)) as sess:
      q = tf.FIFOQueue(10, tf.float32)
      self.assertEqual(tf.compat.as_bytes(""),
                       q.queue_ref.op.get_attr("container"))
      dequeued_t = q.dequeue()

      # Intentionally do not run any enqueue_ops so that dequeue will block
      # until operation_timeout_in_ms.
      with self.assertRaisesRegexp(tf.errors.DeadlineExceededError,
                                   "Timed out waiting for notification"):
        sess.run(dequeued_t) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:15,代碼來源:fifo_queue_test.py

示例14: testContainer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testContainer(self):
    with tf.Graph().as_default():
      with tf.container("test"):
        q = tf.FIFOQueue(10, tf.float32)
    self.assertEqual(tf.compat.as_bytes("test"),
                     q.queue_ref.op.get_attr("container")) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:fifo_queue_test.py

示例15: testSameVariablesClear

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import container [as 別名]
def testSameVariablesClear(self):
    server = tf.train.Server.create_local_server()

    # Creates a graph with 2 variables.
    v0 = tf.Variable([[2, 1]], name="v0")
    v1 = tf.Variable([[1], [2]], name="v1")
    v2 = tf.matmul(v0, v1)

    # Verifies that both sessions connecting to the same target return
    # the same results.
    sess_1 = tf.Session(server.target)
    sess_2 = tf.Session(server.target)
    sess_1.run(tf.global_variables_initializer())
    self.assertAllEqual([[4]], sess_1.run(v2))
    self.assertAllEqual([[4]], sess_2.run(v2))

    # Resets target. sessions abort. Use sess_2 to verify.
    tf.Session.reset(server.target)
    with self.assertRaises(tf.errors.AbortedError):
      self.assertAllEqual([[4]], sess_2.run(v2))

    # Connects to the same target. Device memory for the variables would have
    # been released, so they will be uninitialized.
    sess_2 = tf.Session(server.target)
    with self.assertRaises(tf.errors.FailedPreconditionError):
      sess_2.run(v2)
    # Reinitializes the variables.
    sess_2.run(tf.global_variables_initializer())
    self.assertAllEqual([[4]], sess_2.run(v2))
    sess_2.close()

  # Verifies behavior of tf.Session.reset() with multiple containers using
  # default container names as defined by the target name. 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:35,代碼來源:server_lib_test.py


注:本文中的tensorflow.container方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。