當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.constant方法代碼示例

本文整理匯總了Python中tensorflow.constant方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.constant方法的具體用法?Python tensorflow.constant怎麽用?Python tensorflow.constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.constant方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_adam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def test_adam(self):
        with self.test_session() as sess:
            w = tf.get_variable(
                "w",
                shape=[3],
                initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
            x = tf.constant([0.4, 0.2, -0.5])
            loss = tf.reduce_mean(tf.square(x - w))
            tvars = tf.trainable_variables()
            grads = tf.gradients(loss, tvars)
            global_step = tf.train.get_or_create_global_step()
            optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
            train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
            init_op = tf.group(tf.global_variables_initializer(),
                               tf.local_variables_initializer())
            sess.run(init_op)
            for _ in range(100):
                sess.run(train_op)
            w_np = sess.run(w)
            self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:22,代碼來源:optimization_test.py

示例2: noise_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def noise_input_fn(params):
    """Input function for generating samples for PREDICT mode.

  Generates a single Tensor of fixed random noise. Use tf.data.Dataset to
  signal to the estimator when to terminate the generator returned by
  predict().

  Args:
    params: param `dict` passed by TPUEstimator.

  Returns:
    1-element `dict` containing the randomly generated noise.
  """

    # random noise
    np.random.seed(0)
    noise_dataset = tf.data.Dataset.from_tensors(tf.constant(
        np.random.randn(params['batch_size'], FLAGS.noise_dim), dtype=tf.float32))
    noise = noise_dataset.make_one_shot_iterator().get_next()
    return {'random_noise': noise}, None 
開發者ID:acheketa,項目名稱:cwavegan,代碼行數:22,代碼來源:preview.py

示例3: structure

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def structure(self, input_tensor):
        """
        Args:
            input_tensor: NHWC
        """
        rnd = tf.random_uniform((), 135, 160, dtype=tf.int32)
        rescaled = tf.image.resize_images(
            input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
        h_rem = 160 - rnd
        w_rem = 160 - rnd
        pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
        pad_right = w_rem - pad_left
        pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
        pad_bottom = h_rem - pad_top
        padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [
                        pad_left, pad_right], [0, 0]])
        padded.set_shape((input_tensor.shape[0], 160, 160, 3))
        output = tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(0.9),
                         lambda: padded, lambda: input_tensor)
        return output 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:22,代碼來源:face_attack.py

示例4: test_clip_eta_goldilocks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def test_clip_eta_goldilocks(self):
        # Test that the clipping handles perturbations that are
        # too small, just right, and too big correctly
        eta = tf.constant([[2.], [3.], [4.]])
        assert eta.dtype == tf.float32, eta.dtype
        eps = 3.
        for ord_arg in [np.inf, 1, 2]:
            for sign in [-1., 1.]:
                clipped = clip_eta(eta * sign, ord_arg, eps)
                clipped_value = self.sess.run(clipped)
                gold = sign * np.array([[2.], [3.], [3.]])
                self.assertClose(clipped_value, gold)
                grad, = tf.gradients(clipped, eta)
                grad_value = self.sess.run(grad)
                # Note: the second 1. is debatable (the left-sided derivative
                # and the right-sided derivative do not match, so formally
                # the derivative is not defined). This test makes sure that
                # we at least handle this oddity consistently across all the
                # argument values we test
                gold = sign * np.array([[1.], [1.], [0.]])
                assert np.allclose(grad_value, gold) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:test_utils_tf.py

示例5: test_drop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def test_drop():
    # Make sure dropout is activated successfully

    # We would like to configure the test to deterministically drop,
    # so that the test does not need to use multiple runs.
    # However, tf.nn.dropout divides by include_prob, so zero or
    # infinitesimal include_prob causes NaNs.
    # 1e-8 does not cause NaNs and shouldn't be a significant source
    # of test flakiness relative to dependency downloads failing, etc.
    model = MLP(input_shape=[1, 1], layers=[Dropout(name='output',
                                                    include_prob=1e-8)])
    x = tf.constant([[1]], dtype=tf.float32)
    y = model.get_layer(x, 'output', dropout=True)
    sess = tf.Session()
    y_value = sess.run(y)
    # Subject to very rare random failure because include_prob is not exact 0
    assert y_value == 0., y_value 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:test_dropout.py

示例6: _inv_preemphasis

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def _inv_preemphasis(x):
    N = tf.shape(x)[0]
    i = tf.constant(0)
    W = tf.zeros(shape=tf.shape(x), dtype=tf.float32)

    def condition(i, y):
        return tf.less(i, N)

    def body(i, y):
        tmp = tf.slice(x, [0], [i + 1])
        tmp = tf.concat([tf.zeros([N - i - 1]), tmp], -1)
        y = hparams.preemphasis * y + tmp
        i = tf.add(i, 1)
        return [i, y]

    final = tf.while_loop(condition, body, [i, W])

    y = final[1]

    return y 
開發者ID:candlewill,項目名稱:Griffin_lim,代碼行數:22,代碼來源:griffin_lim.py

示例7: check_tensor_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def check_tensor_shape(tensor_tf, target_shape):
    """ Return a Tensorflow boolean graph that indicates whether
    sample[features_key] has the specified target shape. Only check
    not None entries of target_shape.

    :param tensor_tf: Tensor to check shape for.
    :param target_shape: Target shape to compare tensor to.
    :returns: True if shape is valid, False otherwise (as TF boolean).
    """
    result = tf.constant(True)
    for i, target_length in enumerate(target_shape):
        if target_length:
            result = tf.logical_and(
                result,
                tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i]))
    return result 
開發者ID:deezer,項目名稱:spleeter,代碼行數:18,代碼來源:tensor.py

示例8: testCreateLogisticClassifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def testCreateLogisticClassifier(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = LogisticClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 2)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'LogisticClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(update_ops, []) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model_deploy_test.py

示例9: testCreateSingleclone

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def testCreateSingleclone(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 5)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'BatchNormClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(len(update_ops), 2) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model_deploy_test.py

示例10: testCreateOnecloneWithPS

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def testCreateOnecloneWithPS(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1,
                                                    num_ps_tasks=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      self.assertEqual(len(clones), 1)
      clone = clones[0]
      self.assertEqual(clone.outputs.op.name,
                       'BatchNormClassifier/fully_connected/Sigmoid')
      self.assertDeviceEqual(clone.device, '/job:worker/device:GPU:0')
      self.assertEqual(clone.scope, '')
      self.assertEqual(len(slim.get_variables()), 5)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, '/job:ps/task:0/CPU:0')
        self.assertDeviceEqual(v.device, v.value().device) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:model_deploy_test.py

示例11: testNoSummariesOnGPUForEvals

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def testNoSummariesOnGPUForEvals(self):
    with tf.Graph().as_default():
      deploy_config = model_deploy.DeploymentConfig(num_clones=2)

      # clone function creates a fully_connected layer with a regularizer loss.
      def ModelFn():
        inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32)
        reg = tf.contrib.layers.l2_regularizer(0.001)
        tf.contrib.layers.fully_connected(inputs, 30, weights_regularizer=reg)

      # No optimizer here, it's an eval.
      model = model_deploy.deploy(deploy_config, ModelFn)
      # The model summary op should have a few summary inputs and all of them
      # should be on the CPU.
      self.assertTrue(model.summary_op.op.inputs)
      for inp in  model.summary_op.op.inputs:
        self.assertEqual('/device:CPU:0', inp.device) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:model_deploy_test.py

示例12: _setup_learning_rate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def _setup_learning_rate(config, global_step):
  """Sets up the learning rate with optional exponential decay.

  Args:
    config: Object containing learning rate configuration parameters.
    global_step: Tensor; the global step.

  Returns:
    learning_rate: Tensor; the learning rate with exponential decay.
  """
  if config.learning_rate_decay_factor > 0:
    learning_rate = tf.train.exponential_decay(
        learning_rate=float(config.learning_rate),
        global_step=global_step,
        decay_steps=config.learning_rate_decay_steps,
        decay_rate=config.learning_rate_decay_factor,
        staircase=False)
  else:
    learning_rate = tf.constant(config.learning_rate)
  return learning_rate 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:train.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def __init__(self,
               vocab_size,
               embedding_dim,
               normalize=False,
               vocab_freqs=None,
               keep_prob=1.,
               **kwargs):
    self.vocab_size = vocab_size
    self.embedding_dim = embedding_dim
    self.normalized = normalize
    self.keep_prob = keep_prob

    if normalize:
      assert vocab_freqs is not None
      self.vocab_freqs = tf.constant(
          vocab_freqs, dtype=tf.float32, shape=(vocab_size, 1))

    super(Embedding, self).__init__(**kwargs) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:layers.py

示例14: initialize_fakes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def initialize_fakes(self):
    self.images_shape = (self.batch_size, self.image_height, self.image_width,
                         3)
    self.fake_images = tf.constant(
        self.rng.randint(low=0, high=255,
                         size=self.images_shape).astype('float32'),
        name='input_node')
    self.fake_conv_tower_np = self.rng.randn(
        *self.conv_tower_shape).astype('float32')
    self.fake_conv_tower = tf.constant(self.fake_conv_tower_np)
    self.fake_logits = tf.constant(
        self.rng.randn(*self.chars_logit_shape).astype('float32'))
    self.fake_labels = tf.constant(
        self.rng.randint(
            low=0,
            high=self.num_char_classes,
            size=(self.batch_size, self.seq_length)).astype('int64')) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:model_test.py

示例15: lstm_setup

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import constant [as 別名]
def lstm_setup(name, x, batch_size, is_single_step, lstm_dim, lstm_out,
               num_steps, state_input_op):
  # returns state_name, state_init_op, updated_state_op, out_op 
  with tf.name_scope('reshape_'+name):
    sh = x.get_shape().as_list()
    x = tf.reshape(x, shape=[batch_size, -1, sh[-1]])

  with tf.variable_scope(name) as varscope:
    cell = tf.contrib.rnn.LSTMCell(
      num_units=lstm_dim, forget_bias=1.0, state_is_tuple=False,
      num_proj=lstm_out, use_peepholes=True,
      initializer=tf.random_uniform_initializer(-0.01, 0.01, seed=0),
      cell_clip=None, proj_clip=None)

    sh = [batch_size, 1, lstm_dim+lstm_out]
    state_init_op = tf.constant(0., dtype=tf.float32, shape=sh)

    fn = lambda ns: lstm_online(cell, ns, x, state_input_op, varscope)
    out_op, updated_state_op = tf.cond(is_single_step, lambda: fn(1), lambda:
                                       fn(num_steps))

  return name, state_init_op, updated_state_op, out_op 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:vision_baseline_lstm.py


注:本文中的tensorflow.constant方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。