當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.confusion_matrix方法代碼示例

本文整理匯總了Python中tensorflow.confusion_matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.confusion_matrix方法的具體用法?Python tensorflow.confusion_matrix怎麽用?Python tensorflow.confusion_matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.confusion_matrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_classification_callbacks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def compute_classification_callbacks(self):
        vcs = []
        total_units = self.total_units
        unit_idx = -1
        layer_idx=-1
        for n_units in self.network_config.n_units_per_block:
            for k in range(n_units):
                layer_idx += 1
                unit_idx += 1
                weight = self.weights[unit_idx]
                if weight > 0:
                    scope_name = self.compute_scope_basename(layer_idx)
                    scope_name = self.prediction_scope(scope_name) + '/'
                    vcs.append(MeanIoUFromConfusionMatrix(\
                        cm_name=scope_name+'confusion_matrix/SparseTensorDenseAdd:0',
                        scope_name_prefix=scope_name+'val_'))
                    vcs.append(WeightedTensorStats(\
                        names=[scope_name+'sum_abs_diff:0',
                            scope_name+'prob_sqr_err:0',
                            scope_name+'cross_entropy_loss:0'],
                        weight_name='dynamic_batch_size:0',
                        prefix='val_'))
        return vcs 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:25,代碼來源:anytime_fcn.py

示例2: sparse_mean_fg_f1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def sparse_mean_fg_f1(y_true, y_pred):
    y_pred = tf.argmax(y_pred, axis=-1)

    # Get confusion matrix
    cm = tf.confusion_matrix(tf.reshape(y_true, [-1]),
                             tf.reshape(y_pred, [-1]))

    # Get precisions
    TP = tf.diag_part(cm)
    precisions = TP / tf.reduce_sum(cm, axis=0)

    # Get recalls
    TP = tf.diag_part(cm)
    recalls = TP / tf.reduce_sum(cm, axis=1)

    # Get F1s
    f1s = (2 * precisions * recalls) / (precisions + recalls)

    return tf.reduce_mean(f1s[1:]) 
開發者ID:perslev,項目名稱:MultiPlanarUNet,代碼行數:21,代碼來源:metrics.py

示例3: get_confusion_matrix_ops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def get_confusion_matrix_ops(self, predictions, labels, num_classes, unoccupied_class):
        """ Get ops for maintaining a confusion matrix during training.

            Args:
            predictions: tf.tensor
            labels: tf.tensor
            num_classes: int
            unoccupied_class: int, id of unoccupied class

            Returns: tf.tensor, tf.tensor, tf.tensor

        """

        labels = tf.reshape(labels, [-1])
        predictions_argmax = tf.reshape(tf.argmax(predictions, axis=2), [-1])
        batch_confusion = tf.confusion_matrix(labels, predictions_argmax, num_classes=num_classes, name='batch_confusion')
        confusion = tf.Variable( tf.zeros([num_classes, num_classes], dtype=tf.int32 ), name='confusion' )
        confusion_update = confusion.assign( confusion + batch_confusion )
        confusion_clear = confusion.assign(tf.zeros([num_classes, num_classes], dtype=tf.int32))

        return confusion, confusion_update, confusion_clear 
開發者ID:drethage,項目名稱:fully-convolutional-point-network,代碼行數:23,代碼來源:fcpn.py

示例4: forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def forward(self):
        if self._interaction == 'concat':
            self.out = tf.concat([self.out1, self.out2], axis=1, name="out")
        elif self._interaction == 'multiply':
            self.out = tf.multiply(self.out1, self.out2, name="out")
        fc = tf.layers.dense(self.out, 128, name='fc1', activation=tf.nn.relu)
        # self.scores = tf.layers.dense(self.fc, 1, activation=tf.nn.sigmoid)
        self.logits = tf.layers.dense(fc, 2, name='fc2')
        # self.y_pred = tf.round(tf.nn.sigmoid(self.logits), name="predictions")  # pred class
        self.y_pred = tf.cast(tf.argmax(tf.nn.sigmoid(self.logits), 1, name="predictions"), tf.float32)

        with tf.name_scope("loss"):
            # [batch_size, num_classes]
            y = tf.one_hot(tf.cast(self.input_y, tf.int32), 2)
            cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits, labels=y)
            self.loss = tf.reduce_mean(cross_entropy)
            # self.loss = tf.losses.sigmoid_cross_entropy(logits=self.logits, multi_class_labels=y)

            # y = self.input_y
            # y_ = self.scores
            # self.loss = -tf.reduce_mean(pos_weight * y * tf.log(tf.clip_by_value(y_, 1e-10, 1.0))
            #                             + (1-y) * tf.log(tf.clip_by_value(1-y_, 1e-10, 1.0)))
            # add l2 reg except bias anb BN variables.
            self.l2 = self._l2_reg_lambda * tf.reduce_sum(
                [tf.nn.l2_loss(v) for v in tf.trainable_variables() if not ("noreg" in v.name or "bias" in v.name)])
            self.loss += self.l2

        # Accuracy computation is outside of this class.
        with tf.name_scope("metrics"):
            TP = tf.count_nonzero(self.input_y * self.y_pred, dtype=tf.float32)
            TN = tf.count_nonzero((self.input_y - 1) * (self.y_pred - 1), dtype=tf.float32)
            FP = tf.count_nonzero(self.y_pred * (self.input_y - 1), dtype=tf.float32)
            FN = tf.count_nonzero((self.y_pred - 1) * self.input_y, dtype=tf.float32)
            # tf.div like python2 division, tf.divide like python3
            self.cm = tf.confusion_matrix(self.input_y, self.y_pred, name="confusion_matrix")
            self.acc = tf.divide(TP + TN, TP + TN + FP + FN, name="accuracy")
            self.precision = tf.divide(TP, TP + FP, name="precision")
            self.recall = tf.divide(TP, TP + FN, name="recall")
            self.f1 = tf.divide(2 * self.precision * self.recall, self.precision + self.recall, name="F1_score") 
開發者ID:Lapis-Hong,項目名稱:atec-nlp,代碼行數:41,代碼來源:siamese_net.py

示例5: _calc_accuracy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def _calc_accuracy(self):
        with tf.name_scope("accuracy"):
            predictions = tf.argmax(self.last_vector, 2, name="predictions", output_type=tf.int32)
            labels = self.target_label
            correct_predictions = tf.equal(predictions, labels)
            accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")

            # self.confusion_matrix = tf.confusion_matrix(labels, predictions, num_classes=self.num_classes)
            return accuracy 
開發者ID:devsisters,項目名稱:TCML-tensorflow,代碼行數:11,代碼來源:model.py

示例6: confusion_matrix_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def confusion_matrix_op(logits, labels, num_classes):
    """Creates the operation to build the confusion matrix between the
    predictions and the labels. The number of classes are required to build
    the matrix correctly.
    Args:
        logits: a [batch_size, 1,1, num_classes] tensor or
                a [batch_size, num_classes] tensor
        labels: a [batch_size] tensor
    Returns:
        confusion_matrix_op: the confusion matrix tf op
    """
    with tf.variable_scope('confusion_matrix'):
        # handle fully convolutional classifiers
        logits_shape = logits.shape
        if len(logits_shape) == 4 and logits_shape[1:3] == [1, 1]:
            top_k_logits = tf.squeeze(logits, [1, 2])
        else:
            top_k_logits = logits

        # Extract the predicted label (top-1)
        _, top_predicted_label = tf.nn.top_k(top_k_logits, k=1, sorted=False)
        # (batch_size, k) -> k = 1 -> (batch_size)
        top_predicted_label = tf.squeeze(top_predicted_label, axis=1)

        return tf.confusion_matrix(
            labels, top_predicted_label, num_classes=num_classes) 
開發者ID:galeone,項目名稱:dynamic-training-bench,代碼行數:28,代碼來源:metrics.py

示例7: confmat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def confmat(logits, labels):
        preds = tf.argmax(logits, axis=1)
        return tf.confusion_matrix(labels, preds)

##########################
# Adapted from tkipf/gcn #
########################## 
開發者ID:didi,項目名稱:hetsann,代碼行數:9,代碼來源:base_gattn.py

示例8: sparse_mean_fg_precision

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def sparse_mean_fg_precision(y_true, y_pred):
    y_pred = tf.argmax(y_pred, axis=-1)

    # Get confusion matrix
    cm = tf.confusion_matrix(tf.reshape(y_true, [-1]),
                             tf.reshape(y_pred, [-1]))

    # Get precisions
    TP = tf.diag_part(cm)
    precisions = TP / tf.reduce_sum(cm, axis=0)

    return tf.reduce_mean(precisions[1:]) 
開發者ID:perslev,項目名稱:MultiPlanarUNet,代碼行數:14,代碼來源:metrics.py

示例9: sparse_mean_fg_recall

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def sparse_mean_fg_recall(y_true, y_pred):
    y_pred = tf.argmax(y_pred, axis=-1)

    # Get confusion matrix
    cm = tf.confusion_matrix(tf.reshape(y_true, [-1]),
                             tf.reshape(y_pred, [-1]))

    # Get precisions
    TP = tf.diag_part(cm)
    recalls = TP / tf.reduce_sum(cm, axis=1)

    return tf.reduce_mean(recalls[1:]) 
開發者ID:perslev,項目名稱:MultiPlanarUNet,代碼行數:14,代碼來源:metrics.py

示例10: draw_confusion_matrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def draw_confusion_matrix(matrix):
    '''Draw confusion matrix for MNIST.'''
    fig = tfmpl.create_figure(figsize=(7,7))
    ax = fig.add_subplot(111)
    ax.set_title('Confusion matrix for MNIST classification')
    
    tfmpl.plots.confusion_matrix.draw(
        ax, matrix,
        axis_labels=['Digit ' + str(x) for x in range(10)],
        normalize=True
    )

    return fig 
開發者ID:cheind,項目名稱:tf-matplotlib,代碼行數:15,代碼來源:mnist.py

示例11: get_confusion_matrix_correct_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def get_confusion_matrix_correct_labels(self, ground_truth_input, logits, seq_len, audio_processor):
        predicted_indices = tf.argmax(logits, 1)
        correct_prediction = tf.equal(predicted_indices, ground_truth_input)
        confusion_matrix = tf.confusion_matrix(ground_truth_input, predicted_indices,
                                                        num_classes=self.model_settings['label_count'])
        return predicted_indices,correct_prediction,confusion_matrix 
開發者ID:mostafaelaraby,項目名稱:Tensorflow-Keyword-Spotting,代碼行數:8,代碼來源:VggNet.py

示例12: get_confusion_matrix_correct_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def get_confusion_matrix_correct_labels(self, ground_truth_input, logits, seq_len, audio_processor):
        predicted_indices_orig, _ = tf.nn.ctc_beam_search_decoder(logits, seq_len)
        predicted_indices = self.convert_indices_to_label(predicted_indices_orig[0], audio_processor)
        # call to utils tensor indices to label self.predicted_indices[0]
        correct_label = self.convert_indices_to_label(ground_truth_input, audio_processor)
        correct_prediction = tf.equal([predicted_indices], [correct_label])
        confusion_matrix = tf.confusion_matrix([correct_label], [predicted_indices],
                                               num_classes=self.model_settings['label_count'])
        return predicted_indices,correct_prediction,confusion_matrix 
開發者ID:mostafaelaraby,項目名稱:Tensorflow-Keyword-Spotting,代碼行數:11,代碼來源:CTCModelLSTM.py

示例13: confmat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def confmat(logits, labels):
        preds = tf.argmax(logits, axis=1)
        return tf.confusion_matrix(labels, preds)

    ##########################
    # Adapted from tkipf/gcn #
    ########################## 
開發者ID:BUPTDM,項目名稱:OpenHINE,代碼行數:9,代碼來源:GAT.py

示例14: output_minibatch_stats

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def output_minibatch_stats(self, sess, summary_writer, step, ct_batch, ct_batch_y, mr_batch, mr_batch_y, detail = False):

        """
        minibatch stats for tensorboard observation
        """
        if detail is not True:
            summary_str, summary_img = sess.run([\
                                                    self.scalar_summary_op,
                                                    self.train_image_summary_op],
                                                    feed_dict={\
                                                    self.net.ct_front_bn : False,
                                                    self.net.mr_front_bn : False,
                                                    self.net.joint_bn : False,
                                                    self.net.cls_bn : False,
                                                    self.net.mr: mr_batch,
                                                    self.net.mr_y: mr_batch_y,
                                                    self.net.ct: ct_batch,
                                                    self.net.ct_y: ct_batch_y,
                                                    self.net.keep_prob: 1.\
                                                    })

        else:
            _, curr_conf_mat, summary_str, summary_img = sess.run([\
                                                    self.net.compact_pred,
                                                    self.net.confusion_matrix,
                                                    self.scalar_summary_op,
                                                    self.train_image_summary_op],
                                                    feed_dict={\
                                                    self.net.ct_front_bn : False,
                                                    self.net.mr_front_bn : False,
                                                    self.net.joint_bn : False,
                                                    self.net.cls_bn : False,
                                                    self.net.mr: mr_batch,
                                                    self.net.mr_y: mr_batch_y,
                                                    self.net.ct: ct_batch,
                                                    self.net.ct_y: ct_batch_y,
                                                    self.net.keep_prob: 1.\
                                                    })


            _indicator_eval(curr_conf_mat)
        summary_writer.add_summary(summary_str, step)
        summary_writer.add_summary(summary_img, step)
        summary_writer.flush() 
開發者ID:carrenD,項目名稱:Medical-Cross-Modality-Domain-Adaptation,代碼行數:46,代碼來源:adversarial.py

示例15: test_eval

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import confusion_matrix [as 別名]
def test_eval(self, sess, output_path, flip_correction = True):

        all_cm = np.zeros([self.num_cls, self.num_cls])

        pred_folder = os.path.join(output_path, "dense_pred")
        try:
            os.makedirs(pred_folder)
        except:
            logging.info("prediction folder exists")

        self.test_pair_list = list(zip(self.test_label_list, self.test_nii_list))

        sample_eval_list = [] # evaluation of each sample

        for idx_file, pair in enumerate(self.test_pair_list):
            sample_cm = np.zeros([self.num_cls, self.num_cls]) # confusion matrix for each sample
            label_fid = pair[0]
            nii_fid = pair[1]
            if not os.path.isfile(nii_fid):
                raise Exception("cannot find sample %s"%str(nii_fid))
            raw = read_nii_image(nii_fid)
            raw_y = read_nii_image(label_fid)

            if flip_correction is True:
                raw = np.flip(raw, axis = 0)
                raw = np.flip(raw, axis = 1)
                raw_y = np.flip(raw_y, axis = 0)
                raw_y = np.flip(raw_y, axis = 1)

            tmp_y = np.zeros(raw_y.shape)

            frame_list = [kk for kk in range(1, raw.shape[2] - 1)]
            np.random.shuffle(frame_list)
            for ii in range( int( floor( raw.shape[2] // self.net.batch_size  )  )  ):
                vol = np.zeros( [self.net.batch_size, raw_size[0], raw_size[1], raw_size[2]]  )
                slice_y = np.zeros( [self.net.batch_size, label_size[0], label_size[1]]  )
                for idx, jj in enumerate(frame_list[ ii * self.net.batch_size : (ii + 1) * self.net.batch_size  ]):
                    vol[idx, ...] = raw[ ..., jj -1: jj+2  ].copy()
                    slice_y[idx,...] = raw_y[..., jj ].copy()

                vol_y = _label_decomp(self.num_cls, slice_y)
                pred, curr_conf_mat= sess.run([self.net.compact_pred, self.net.confusion_matrix], feed_dict =\
                                              {self.net.ct: vol, self.net.ct_y: vol_y, self.net.keep_prob: 1.0, self.net.mr_front_bn : False,\
                                               self.net.ct_front_bn: False})

                for idx, jj in enumerate(frame_list[ii * self.net.batch_size: (ii + 1) * self.net.batch_size]):
                    tmp_y[..., jj] = pred[idx, ...].copy()

                sample_cm += curr_conf_mat

            all_cm += sample_cm
            sample_dice = _dice(sample_cm)
            sample_jaccard = _jaccard(sample_cm)
            sample_eval_list.append((sample_dice, sample_jaccard))

        subject_dice_list, subject_jaccard_list = self.sample_metric_stddev(sample_eval_list)

        np.savetxt(os.path.join(output_path, "cm.csv"), all_cm)

        return subject_dice_list, subject_jaccard_list 
開發者ID:carrenD,項目名稱:Medical-Cross-Modality-Domain-Adaptation,代碼行數:62,代碼來源:adversarial.py


注:本文中的tensorflow.confusion_matrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。