當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.concat方法代碼示例

本文整理匯總了Python中tensorflow.concat方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.concat方法的具體用法?Python tensorflow.concat怎麽用?Python tensorflow.concat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.concat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def _forward(self):
        inp = self.inp.out
        shape = inp.get_shape().as_list()
        _, h, w, c = shape
        s = self.lay.stride
        out = list()
        for i in range(int(h/s)):
            row_i = list()
            for j in range(int(w/s)):
                si, sj = s * i, s * j
                boxij = inp[:, si: si+s, sj: sj+s,:]
                flatij = tf.reshape(boxij, [-1,1,1,c*s*s])
                row_i += [flatij]
            out += [tf.concat(row_i, 2)]

        self.out = tf.concat(out, 1) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:18,代碼來源:convolution.py

示例2: forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def forward(self):
        pad = [[self.lay.pad, self.lay.pad]] * 2;
        temp = tf.pad(self.inp.out, [[0, 0]] + pad + [[0, 0]])

        k = self.lay.w['kernels']
        ksz = self.lay.ksize
        half = int(ksz / 2)
        out = list()
        for i in range(self.lay.h_out):
            row_i = list()
            for j in range(self.lay.w_out):
                kij = k[i * self.lay.w_out + j]
                i_, j_ = i + 1 - half, j + 1 - half
                tij = temp[:, i_ : i_ + ksz, j_ : j_ + ksz,:]
                row_i.append(
                    tf.nn.conv2d(tij, kij, 
                        padding = 'VALID', 
                        strides = [1] * 4))
            out += [tf.concat(row_i, 2)]

        self.out = tf.concat(out, 1) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:23,代碼來源:convolution.py

示例3: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def call(self, inputs, **kwargs):

        query, keys = inputs

        keys_len = keys.get_shape()[1]
        queries = K.repeat_elements(query, keys_len, 1)

        att_input = tf.concat(
            [queries, keys, queries - keys, queries * keys], axis=-1)

        att_out = MLP(self.hidden_size, self.activation, self.l2_reg,
                      self.keep_prob, self.use_bn, seed=self.seed)(att_input)
        attention_score = tf.nn.bias_add(tf.tensordot(
            att_out, self.kernel, axes=(-1, 0)), self.bias)

        return attention_score 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:18,代碼來源:core.py

示例4: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def call(self, x):
        if (self.size == None) or (self.mode == 'sum'):
            self.size = int(x.shape[-1])

        position_j = 1. / \
            K.pow(10000., 2 * K.arange(self.size / 2, dtype='float32') / self.size)
        position_j = K.expand_dims(position_j, 0)

        position_i = tf.cumsum(K.ones_like(x[:, :, 0]), 1) - 1
        position_i = K.expand_dims(position_i, 2)
        position_ij = K.dot(position_i, position_j)
        outputs = K.concatenate(
            [K.cos(position_ij), K.sin(position_ij)], 2)

        if self.mode == 'sum':
            if self.scale:
                outputs = outputs * outputs ** 0.5
            return x + outputs
        elif self.mode == 'concat':
            return K.concatenate([outputs, x], 2) 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:22,代碼來源:sequence.py

示例5: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def call(self, inputs, **kwargs):
        if K.ndim(inputs[0]) != 3:
            raise ValueError(
                "Unexpected inputs dimensions %d, expect to be 3 dimensions" % (K.ndim(inputs)))

        embed_list = inputs
        row = []
        col = []
        num_inputs = len(embed_list)

        for i in range(num_inputs - 1):
            for j in range(i + 1, num_inputs):
                row.append(i)
                col.append(j)
        p = tf.concat([embed_list[idx]
                       for idx in row], axis=1)  # batch num_pairs k
        q = tf.concat([embed_list[idx] for idx in col], axis=1)
        inner_product = p * q
        if self.reduce_sum:
            inner_product = tf.reduce_sum(
                inner_product, axis=2, keep_dims=True)
        return inner_product 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:24,代碼來源:interaction.py

示例6: minibatch_stddev_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def minibatch_stddev_layer(x, group_size=4):
    with tf.variable_scope('MinibatchStddev'):
        group_size = tf.minimum(group_size, tf.shape(x)[0])     # Minibatch must be divisible by (or smaller than) group_size.
        s = x.shape                                             # [NCHW]  Input shape.
        y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]])   # [GMCHW] Split minibatch into M groups of size G.
        y = tf.cast(y, tf.float32)                              # [GMCHW] Cast to FP32.
        y -= tf.reduce_mean(y, axis=0, keep_dims=True)           # [GMCHW] Subtract mean over group.
        y = tf.reduce_mean(tf.square(y), axis=0)                # [MCHW]  Calc variance over group.
        y = tf.sqrt(y + 1e-8)                                   # [MCHW]  Calc stddev over group.
        y = tf.reduce_mean(y, axis=[1,2,3], keep_dims=True)      # [M111]  Take average over fmaps and pixels.
        y = tf.cast(y, x.dtype)                                 # [M111]  Cast back to original data type.
        y = tf.tile(y, [group_size, 1, s[2], s[3]])             # [N1HW]  Replicate over group and pixels.
        return tf.concat([x, y], axis=1)                        # [NCHW]  Append as new fmap.

#----------------------------------------------------------------------------
# Generator network used in the paper. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:18,代碼來源:networks.py

示例7: block35

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 35x35 resnet block."""
  with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
    with tf.variable_scope('Branch_2'):
      tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
      tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
    net += scale * up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:inception_resnet_v2.py

示例8: block17

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 17x17 resnet block."""
  with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
                                  scope='Conv2d_0b_1x7')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
                                  scope='Conv2d_0c_7x1')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
    net += scale * up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:inception_resnet_v2.py

示例9: block8

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 8x8 resnet block."""
  with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
                                  scope='Conv2d_0b_1x3')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
                                  scope='Conv2d_0c_3x1')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
    net += scale * up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:inception_resnet_v2.py

示例10: preprocess_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def preprocess_batch(images_batch, preproc_func=None):
    """
    Creates a preprocessing graph for a batch given a function that processes
    a single image.

    :param images_batch: A tensor for an image batch.
    :param preproc_func: (optional function) A function that takes in a
        tensor and returns a preprocessed input.
    """
    if preproc_func is None:
        return images_batch

    with tf.variable_scope('preprocess'):
        images_list = tf.split(images_batch, int(images_batch.shape[0]))
        result_list = []
        for img in images_list:
            reshaped_img = tf.reshape(img, img.shape[1:])
            processed_img = preproc_func(reshaped_img)
            result_list.append(tf.expand_dims(processed_img, axis=0))
        result_images = tf.concat(result_list, axis=0)
    return result_images 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:utils.py

示例11: _inv_preemphasis

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def _inv_preemphasis(x):
    N = tf.shape(x)[0]
    i = tf.constant(0)
    W = tf.zeros(shape=tf.shape(x), dtype=tf.float32)

    def condition(i, y):
        return tf.less(i, N)

    def body(i, y):
        tmp = tf.slice(x, [0], [i + 1])
        tmp = tf.concat([tf.zeros([N - i - 1]), tmp], -1)
        y = hparams.preemphasis * y + tmp
        i = tf.add(i, 1)
        return [i, y]

    final = tf.while_loop(condition, body, [i, W])

    y = final[1]

    return y 
開發者ID:candlewill,項目名稱:Griffin_lim,代碼行數:22,代碼來源:griffin_lim.py

示例12: pad_and_reshape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def pad_and_reshape(instr_spec, frame_length, F):
    """
    :param instr_spec:
    :param frame_length:
    :param F:
    :returns:
    """
    spec_shape = tf.shape(instr_spec)
    extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1]))
    n_extra_row = (frame_length) // 2 + 1 - F
    extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
    extended_spec = tf.concat([instr_spec, extension], axis=2)
    old_shape = tf.shape(extended_spec)
    new_shape = tf.concat([
        [old_shape[0] * old_shape[1]],
        old_shape[2:]],
        axis=0)
    processed_instr_spec = tf.reshape(extended_spec, new_shape)
    return processed_instr_spec 
開發者ID:deezer,項目名稱:spleeter,代碼行數:21,代碼來源:tensor.py

示例13: block_inception_a

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def block_inception_a(inputs, scope=None, reuse=None):
  """Builds Inception-A block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockInceptionA', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 96, [1, 1], scope='Conv2d_0a_1x1')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
        branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3')
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
        branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
        branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
      with tf.variable_scope('Branch_3'):
        branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
        branch_3 = slim.conv2d(branch_3, 96, [1, 1], scope='Conv2d_0b_1x1')
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:inception_v4.py

示例14: block_reduction_a

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def block_reduction_a(inputs, scope=None, reuse=None):
  """Builds Reduction-A block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockReductionA', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 384, [3, 3], stride=2, padding='VALID',
                               scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
        branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3')
        branch_1 = slim.conv2d(branch_1, 256, [3, 3], stride=2,
                               padding='VALID', scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
                                   scope='MaxPool_1a_3x3')
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:inception_v4.py

示例15: block_reduction_b

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import concat [as 別名]
def block_reduction_b(inputs, scope=None, reuse=None):
  """Builds Reduction-B block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockReductionB', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
        branch_0 = slim.conv2d(branch_0, 192, [3, 3], stride=2,
                               padding='VALID', scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1')
        branch_1 = slim.conv2d(branch_1, 256, [1, 7], scope='Conv2d_0b_1x7')
        branch_1 = slim.conv2d(branch_1, 320, [7, 1], scope='Conv2d_0c_7x1')
        branch_1 = slim.conv2d(branch_1, 320, [3, 3], stride=2,
                               padding='VALID', scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
                                   scope='MaxPool_1a_3x3')
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:inception_v4.py


注:本文中的tensorflow.concat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。