本文整理匯總了Python中tensorflow.complex64方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.complex64方法的具體用法?Python tensorflow.complex64怎麽用?Python tensorflow.complex64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.complex64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: one_hot_add
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def one_hot_add(inputs, shift):
"""Performs (inputs + shift) % vocab_size in the one-hot space.
Args:
inputs: Tensor of shape `[..., vocab_size]`. Typically a soft/hard one-hot
Tensor.
shift: Tensor of shape `[..., vocab_size]`. Typically a soft/hard one-hot
Tensor specifying how much to shift the corresponding one-hot vector in
inputs. Soft values perform a "weighted shift": for example,
shift=[0.2, 0.3, 0.5] performs a linear combination of 0.2 * shifting by
zero; 0.3 * shifting by one; and 0.5 * shifting by two.
Returns:
Tensor of same shape and dtype as inputs.
"""
# Compute circular 1-D convolution with shift as the kernel.
inputs = tf.cast(inputs, tf.complex64)
shift = tf.cast(shift, tf.complex64)
return tf.real(tf.signal.ifft(tf.signal.fft(inputs) * tf.signal.fft(shift)))
示例2: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def call(self, inputx):
if not inputx.dtype in [tf.complex64, tf.complex128]:
print('Warning: inputx is not complex. Converting.', file=sys.stderr)
# if inputx is float, this will assume 0 imag channel
inputx = tf.cast(inputx, tf.complex64)
# get the right fft
if self.ndims == 1:
fft = tf.fft
elif self.ndims == 2:
fft = tf.fft2d
else:
fft = tf.fft3d
perm_dims = [0, self.ndims + 1] + list(range(1, self.ndims + 1))
invert_perm_ndims = [0] + list(range(2, self.ndims + 2)) + [1]
perm_inputx = K.permute_dimensions(inputx, perm_dims) # [batch_size, nb_features, *vol_size]
fft_inputx = fft(perm_inputx)
return K.permute_dimensions(fft_inputx, invert_perm_ndims)
示例3: invert_spectra_griffin_lim
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def invert_spectra_griffin_lim(X_mag, nfft, nhop, ngl):
X = tf.complex(X_mag, tf.zeros_like(X_mag))
def b(i, X_best):
x = tf.contrib.signal.inverse_stft(X_best, nfft, nhop)
X_est = tf.contrib.signal.stft(x, nfft, nhop)
phase = X_est / tf.cast(tf.maximum(1e-8, tf.abs(X_est)), tf.complex64)
X_best = X * phase
return i + 1, X_best
i = tf.constant(0)
c = lambda i, _: tf.less(i, ngl)
_, X = tf.while_loop(c, b, [i, X], back_prop=False)
x = tf.contrib.signal.inverse_stft(X, nfft, nhop)
x = x[:, :_SLICE_LEN]
return x
示例4: _compareBCast
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def _compareBCast(self, xs, ys, dtype, np_func, tf_func):
if dtype in (np.complex64, np.complex128):
x = (1 + np.linspace(0, 2 + 3j, np.prod(xs))).astype(dtype).reshape(xs)
y = (1 + np.linspace(0, 2 - 2j, np.prod(ys))).astype(dtype).reshape(ys)
else:
x = (1 + np.linspace(0, 5, np.prod(xs))).astype(dtype).reshape(xs)
y = (1 + np.linspace(0, 5, np.prod(ys))).astype(dtype).reshape(ys)
self._compareCpu(x, y, np_func, tf_func)
if x.dtype in (np.float16, np.float32, np.float64, np.complex64,
np.complex128):
if tf_func not in (_FLOORDIV, tf.floordiv):
if x.dtype == np.float16:
# Compare fp16 theoretical gradients to fp32 numerical gradients,
# since fp16 numerical gradients are too imprecise unless great
# care is taken with choosing the inputs and the delta. This is
# a weaker check (in particular, it does not test the op itself,
# only its gradient), but it's much better than nothing.
self._compareGradientX(x, y, np_func, tf_func, np.float)
self._compareGradientY(x, y, np_func, tf_func, np.float)
else:
self._compareGradientX(x, y, np_func, tf_func)
self._compareGradientY(x, y, np_func, tf_func)
self._compareGpu(x, y, np_func, tf_func)
# TODO(josh11b,vrv): Refactor this to use parameterized tests.
示例5: _testBCastByFunc
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def _testBCastByFunc(self, funcs, xs, ys):
dtypes = [
np.float16,
np.float32,
np.float64,
np.int32,
np.int64,
np.complex64,
np.complex128,
]
for dtype in dtypes:
for (np_func, tf_func) in funcs:
if (dtype in (np.complex64, np.complex128) and
tf_func in (_FLOORDIV, tf.floordiv)):
continue # floordiv makes no sense for complex numbers
self._compareBCast(xs, ys, dtype, np_func, tf_func)
self._compareBCast(ys, xs, dtype, np_func, tf_func)
示例6: testTensorCompareTensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def testTensorCompareTensor(self):
x = np.linspace(-15, 15, 6).reshape(1, 3, 2)
y = np.linspace(20, -10, 6).reshape(1, 3, 2)
for t in [np.float16, np.float32, np.float64, np.int32, np.int64]:
xt = x.astype(t)
yt = y.astype(t)
self._compareBoth(xt, yt, np.less, tf.less)
self._compareBoth(xt, yt, np.less_equal, tf.less_equal)
self._compareBoth(xt, yt, np.greater, tf.greater)
self._compareBoth(xt, yt, np.greater_equal, tf.greater_equal)
self._compareBoth(xt, yt, np.equal, tf.equal)
self._compareBoth(xt, yt, np.not_equal, tf.not_equal)
# TODO(zhifengc): complex64 doesn't work on GPU yet.
for t in [np.complex64, np.complex128]:
self._compareCpu(x.astype(t), y.astype(t), np.equal, tf.equal)
self._compareCpu(x.astype(t), y.astype(t), np.not_equal, tf.not_equal)
示例7: _toDataType
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def _toDataType(self, dtype):
"""Returns TensorFlow data type for numpy type."""
if dtype == np.float32:
return tf.float32
elif dtype == np.float64:
return tf.float64
elif dtype == np.int32:
return tf.int32
elif dtype == np.int64:
return tf.int64
elif dtype == np.bool:
return tf.bool
elif dtype == np.complex64:
return tf.complex64
elif dtype == np.complex128:
return tf.complex128
else:
return None
示例8: _testTypes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def _testTypes(self, x, use_gpu=False):
"""Tests cast(x) to different tf."""
if use_gpu:
type_list = [np.float32, np.float64, np.int64,
np.complex64, np.complex128]
else:
type_list = [np.float32, np.float64, np.int32,
np.int64, np.complex64, np.complex128]
for from_type in type_list:
for to_type in type_list:
self._test(x.astype(from_type), to_type, use_gpu)
self._test(x.astype(np.bool), np.float32, use_gpu)
self._test(x.astype(np.uint8), np.float32, use_gpu)
if not use_gpu:
self._test(x.astype(np.bool), np.int32, use_gpu)
self._test(x.astype(np.int32), np.int32, use_gpu)
示例9: testDtype
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def testDtype(self):
with self.test_session():
d = tf.fill([2, 3], 12., name="fill")
self.assertEqual(d.get_shape(), [2, 3])
# Test default type for both constant size and dynamic size
z = tf.zeros([2, 3])
self.assertEqual(z.dtype, tf.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
z = tf.zeros(tf.shape(d))
self.assertEqual(z.dtype, tf.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
# Test explicit type control
for dtype in [tf.float32, tf.float64, tf.int32,
tf.uint8, tf.int16, tf.int8,
tf.complex64, tf.complex128, tf.int64, tf.bool]:
z = tf.zeros([2, 3], dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
z = tf.zeros(tf.shape(d), dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
示例10: testOnesLike
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def testOnesLike(self):
for dtype in [tf.float32, tf.float64, tf.int32,
tf.uint8, tf.int16, tf.int8,
tf.complex64, tf.complex128, tf.int64]:
numpy_dtype = dtype.as_numpy_dtype
with self.test_session():
# Creates a tensor of non-zero values with shape 2 x 3.
d = tf.constant(np.ones((2, 3), dtype=numpy_dtype), dtype=dtype)
# Constructs a tensor of zeros of the same dimensions and type as "d".
z_var = tf.ones_like(d)
# Test that the type is correct
self.assertEqual(z_var.dtype, dtype)
z_value = z_var.eval()
# Test that the value is correct
self.assertTrue(np.array_equal(z_value, np.array([[1] * 3] * 2)))
self.assertEqual([2, 3], z_var.get_shape())
示例11: testValues
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def testValues(self):
dtypes = [tf.float32,
tf.float64,
tf.int64,
tf.int32,
tf.complex64,
tf.complex128]
indices_flat = np.array([0, 4, 0, 8, 3, 8, 4, 7, 7, 3])
num_segments = 12
for indices in indices_flat, indices_flat.reshape(5, 2):
shape = indices.shape + (2,)
for dtype in dtypes:
with self.test_session(use_gpu=self.use_gpu):
tf_x, np_x = self._input(shape, dtype=dtype)
np_ans = self._segmentReduce(indices,
np_x,
np.add,
op2=None,
num_out_rows=num_segments)
s = tf.unsorted_segment_sum(data=tf_x,
segment_ids=indices,
num_segments=num_segments)
tf_ans = s.eval()
self._assertAllClose(indices, np_ans, tf_ans)
self.assertShapeEqual(np_ans, s)
示例12: testTypes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def testTypes(self):
types_to_test = {
"bool": (tf.bool, bool),
"float32": (tf.float32, float),
"float64": (tf.float64, float),
"complex64": (tf.complex64, complex),
"complex128": (tf.complex128, complex),
"uint8": (tf.uint8, int),
"int32": (tf.int32, int),
"int64": (tf.int64, int),
bytes: (tf.string, bytes)
}
for dtype_np, (dtype_tf, cast) in types_to_test.items():
with self.test_session(use_gpu=True):
inp = np.random.rand(4, 1).astype(dtype_np)
a = tf.constant([cast(x) for x in inp.ravel(order="C")], shape=[4, 1],
dtype=dtype_tf)
tiled = tf.tile(a, [1, 4])
result = tiled.eval()
self.assertEqual(result.shape, (4, 4))
self.assertEqual([4, 4], tiled.get_shape())
self.assertAllEqual(result, np.tile(inp, (1, 4)))
示例13: _testGrad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def _testGrad(self, shape, dtype=None, max_error=None, bias=None, sigma=None):
np.random.seed(7)
if dtype in (tf.complex64, tf.complex128):
value = tf.complex(self._biasedRandN(shape, bias=bias, sigma=sigma),
self._biasedRandN(shape, bias=bias, sigma=sigma))
else:
value = tf.convert_to_tensor(self._biasedRandN(shape, bias=bias),
dtype=dtype)
with self.test_session(use_gpu=True):
if dtype in (tf.complex64, tf.complex128):
output = tf.complex_abs(value)
else:
output = tf.abs(value)
error = tf.test.compute_gradient_error(
value, shape, output, output.get_shape().as_list())
self.assertLess(error, max_error)
示例14: testComplex64N
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def testComplex64N(self):
t = tensor_util.make_tensor_proto([(1+2j), (3+4j), (5+6j)], shape=[1, 3],
dtype=tf.complex64)
self.assertProtoEquals("""
dtype: DT_COMPLEX64
tensor_shape { dim { size: 1 } dim { size: 3 } }
scomplex_val: 1
scomplex_val: 2
scomplex_val: 3
scomplex_val: 4
scomplex_val: 5
scomplex_val: 6
""", t)
a = tensor_util.MakeNdarray(t)
self.assertEquals(np.complex64, a.dtype)
self.assertAllEqual(np.array([[(1+2j), (3+4j), (5+6j)]]), a)
示例15: testComplex64NpArray
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex64 [as 別名]
def testComplex64NpArray(self):
t = tensor_util.make_tensor_proto(
np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), dtype=tf.complex64)
# scomplex_val are real_0, imag_0, real_1, imag_1, ...
self.assertProtoEquals("""
dtype: DT_COMPLEX64
tensor_shape { dim { size: 2 } dim { size: 2 } }
scomplex_val: 1
scomplex_val: 2
scomplex_val: 3
scomplex_val: 4
scomplex_val: 5
scomplex_val: 6
scomplex_val: 7
scomplex_val: 8
""", t)
a = tensor_util.MakeNdarray(t)
self.assertEquals(np.complex64, a.dtype)
self.assertAllEqual(np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), a)