當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.complex方法代碼示例

本文整理匯總了Python中tensorflow.complex方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.complex方法的具體用法?Python tensorflow.complex怎麽用?Python tensorflow.complex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.complex方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def call(self, inputx):
        
        if not inputx.dtype in [tf.complex64, tf.complex128]:
            print('Warning: inputx is not complex. Converting.', file=sys.stderr)
        
            # if inputx is float, this will assume 0 imag channel
            inputx = tf.cast(inputx, tf.complex64)

        # get the right fft
        if self.ndims == 1:
            fft = tf.fft
        elif self.ndims == 2:
            fft = tf.fft2d
        else:
            fft = tf.fft3d

        perm_dims = [0, self.ndims + 1] + list(range(1, self.ndims + 1))
        invert_perm_ndims = [0] + list(range(2, self.ndims + 2)) + [1]
        
        perm_inputx = K.permute_dimensions(inputx, perm_dims)  # [batch_size, nb_features, *vol_size]
        fft_inputx = fft(perm_inputx)
        return K.permute_dimensions(fft_inputx, invert_perm_ndims) 
開發者ID:adalca,項目名稱:neuron,代碼行數:24,代碼來源:layers.py

示例2: invert_spectra_griffin_lim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def invert_spectra_griffin_lim(X_mag, nfft, nhop, ngl):
    X = tf.complex(X_mag, tf.zeros_like(X_mag))

    def b(i, X_best):
        x = tf.contrib.signal.inverse_stft(X_best, nfft, nhop)
        X_est = tf.contrib.signal.stft(x, nfft, nhop)
        phase = X_est / tf.cast(tf.maximum(1e-8, tf.abs(X_est)), tf.complex64)
        X_best = X * phase
        return i + 1, X_best

    i = tf.constant(0)
    c = lambda i, _: tf.less(i, ngl)
    _, X = tf.while_loop(c, b, [i, X], back_prop=False)

    x = tf.contrib.signal.inverse_stft(X, nfft, nhop)
    x = x[:, :_SLICE_LEN]

    return x 
開發者ID:chrisdonahue,項目名稱:wavegan,代碼行數:20,代碼來源:train_specgan.py

示例3: _testBCastByFunc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def _testBCastByFunc(self, funcs, xs, ys):
    dtypes = [
        np.float16,
        np.float32,
        np.float64,
        np.int32,
        np.int64,
        np.complex64,
        np.complex128,
    ]
    for dtype in dtypes:
      for (np_func, tf_func) in funcs:
        if (dtype in (np.complex64, np.complex128) and
              tf_func in (_FLOORDIV, tf.floordiv)):
          continue  # floordiv makes no sense for complex numbers
        self._compareBCast(xs, ys, dtype, np_func, tf_func)
        self._compareBCast(ys, xs, dtype, np_func, tf_func) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:cwise_ops_test.py

示例4: _compareGradient

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def _compareGradient(self, x):
    # x[:, 0] is real, x[:, 1] is imag.  We combine real and imag into
    # complex numbers. Then, we extract real and imag parts and
    # computes the squared sum. This is obviously the same as sum(real
    # * real) + sum(imag * imag). We just want to make sure the
    # gradient function is checked.
    with self.test_session():
      inx = tf.convert_to_tensor(x)
      real, imag = tf.split(1, 2, inx)
      real, imag = tf.reshape(real, [-1]), tf.reshape(imag, [-1])
      cplx = tf.complex(real, imag)
      cplx = tf.conj(cplx)
      loss = tf.reduce_sum(
          tf.square(tf.real(cplx))) + tf.reduce_sum(
              tf.square(tf.imag(cplx)))
      epsilon = 1e-3
      jacob_t, jacob_n = tf.test.compute_gradient(inx,
                                                  list(x.shape),
                                                  loss,
                                                  [1],
                                                  x_init_value=x,
                                                  delta=epsilon)
    self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:cwise_ops_test.py

示例5: _checkGrad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def _checkGrad(self, func, x, y, use_gpu=False):
    with self.test_session(use_gpu=use_gpu):
      inx = tf.convert_to_tensor(x)
      iny = tf.convert_to_tensor(y)
      # func is a forward or inverse FFT function (batched or unbatched)
      z = func(tf.complex(inx, iny))
      # loss = sum(|z|^2)
      loss = tf.reduce_sum(tf.real(z * tf.conj(z)))
      ((x_jacob_t, x_jacob_n),
       (y_jacob_t, y_jacob_n)) = tf.test.compute_gradient(
           [inx, iny],
           [list(x.shape), list(y.shape)],
           loss,
           [1],
           x_init_value=[x, y],
           delta=1e-2)
    self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=1e-2)
    self.assertAllClose(y_jacob_t, y_jacob_n, rtol=1e-2, atol=1e-2) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:fft_ops_test.py

示例6: test_fftc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def test_fftc(self):
        shape = [10, 10, 2]
        data = tf.complex(
            tf.random_uniform(shape), tf.random_uniform(shape))
        fdata = tfmri.fftc(data)
        fdata_np = self._fftnc(data, axes=(-2,))
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.fftc(data, data_format='channels_first')
        fdata_np = self._fftnc(data, axes=(-1,))
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.fftc(data, orthonorm=False)
        fdata_np = self._fftnc(data, axes=(-2,), norm=None)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps) 
開發者ID:MRSRL,項目名稱:dl-cs,代碼行數:20,代碼來源:tfmri_test.py

示例7: test_ifftc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def test_ifftc(self):
        shape = [10, 10, 2]
        data = tf.complex(
            tf.random_uniform(shape), tf.random_uniform(shape))
        fdata_np = self._fftnc(data, axes=(-2,), transpose=True)
        fdata = tfmri.ifftc(data)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)
        fdata = tfmri.fftc(data, transpose=True)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.ifftc(data, data_format='channels_first')
        fdata_np = self._fftnc(data, axes=(-1,), transpose=True)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.ifftc(data, orthonorm=False)
        fdata_np = self._fftnc(data, axes=(-2,), norm=None, transpose=True)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps) 
開發者ID:MRSRL,項目名稱:dl-cs,代碼行數:23,代碼來源:tfmri_test.py

示例8: test_fft2c

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def test_fft2c(self):
        shape = [10, 10, 2]
        data = tf.complex(
            tf.random_uniform(shape), tf.random_uniform(shape))
        fdata = tfmri.fft2c(data)
        fdata_np = self._fftnc(data, axes=(-3, -2))
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.fft2c(data, data_format='channels_first')
        fdata_np = self._fftnc(data, axes=(-2, -1))
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.fft2c(data, orthonorm=False)
        fdata_np = self._fftnc(data, axes=(-3, -2), norm=None)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps) 
開發者ID:MRSRL,項目名稱:dl-cs,代碼行數:20,代碼來源:tfmri_test.py

示例9: test_ifft2c

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def test_ifft2c(self):
        shape = [10, 10, 2]
        data = tf.complex(
            tf.random_uniform(shape), tf.random_uniform(shape))
        fdata_np = self._fftnc(data, axes=(-3, -2), transpose=True)
        fdata = tfmri.ifft2c(data)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)
        fdata = tfmri.fft2c(data, transpose=True)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.ifft2c(data, data_format='channels_first')
        fdata_np = self._fftnc(data, axes=(-2, -1), transpose=True)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps)

        fdata = tfmri.ifft2c(data, orthonorm=False)
        fdata_np = self._fftnc(data, axes=(-3, -2), norm=None, transpose=True)
        diff = np.mean(np.abs(fdata_np - fdata) ** 2)
        self.assertTrue(diff < eps) 
開發者ID:MRSRL,項目名稱:dl-cs,代碼行數:23,代碼來源:tfmri_test.py

示例10: channels_to_complex

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def channels_to_complex(image,
                        data_format='channels_last',
                        name='channels2complex'):
    """Convert data from channels to complex."""
    if len(image.shape) != 3 and len(image.shape) != 4:
        raise TypeError('Input data must be have 3 or 4 dimensions')

    axis_c = -1 if data_format == 'channels_last' else -3
    shape_c = image.shape[axis_c].value

    if shape_c and (shape_c % 2 != 0):
        raise TypeError(
            'Number of channels (%d) must be divisible by 2' % shape_c)
    if image.dtype is tf.complex64 or image.dtype is tf.complex128:
        raise TypeError('Input data cannot be complex')

    with tf.name_scope(name):
        image_real, image_imag = tf.split(image, 2, axis=axis_c)
        image_out = tf.complex(image_real, image_imag)
    return image_out 
開發者ID:MRSRL,項目名稱:dl-cs,代碼行數:22,代碼來源:tfmri.py

示例11: hdrplus_merge

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def hdrplus_merge(imgs, N, c, sig):
    ccast_tf = lambda x : tf.complex(x, tf.zeros_like(x))

    # imgs is [batch, h, w, ch]
    rcw = tf.expand_dims(rcwindow(N), axis=-1)
    imgs = imgs * rcw
    imgs = tf.transpose(imgs, [0, 3, 1, 2])
    imgs_f = tf.fft2d(ccast_tf(imgs))
    imgs_f = tf.transpose(imgs_f, [0, 2, 3, 1])
    Dz2 = tf.square(tf.abs(imgs_f[...,0:1] - imgs_f))
    Az = Dz2 / (Dz2 + c*sig**2)
    filt0 = 1 + tf.expand_dims(tf.reduce_sum(Az[...,1:], axis=-1), axis=-1)
    filts = tf.concat([filt0, 1 - Az[...,1:]], axis=-1)
    output_f = tf.reduce_mean(imgs_f * ccast_tf(filts), axis=-1)
    output_f = tf.real(tf.ifft2d(output_f))

    return output_f 
開發者ID:google,項目名稱:burst-denoising,代碼行數:19,代碼來源:tf_image.py

示例12: complex_modulus

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def complex_modulus(x):
    """Computes complex modulus.

        Parameters
        ----------
        x : tensor
            Input tensor whose complex modulus is to be calculated.

        Returns
        -------
        modulus : tensor
            Tensor the same size as input_array. modulus holds the
            result of the complex modulus.

    """
    modulus = tf.abs(x)
    return modulus 
開發者ID:kymatio,項目名稱:kymatio,代碼行數:19,代碼來源:tensorflow_backend.py

示例13: compute_fft

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def compute_fft(x, direction="C2C", inverse=False):

    if direction == 'C2R':
        inverse = True

    x_shape = x.get_shape().as_list()
    h, w = x_shape[-2], x_shape[-3]

    x_complex = tf.complex(x[..., 0], x[..., 1])

    if direction == 'C2R':
        out = tf.real(tf.ifft2d(x_complex)) * h * w
        return out

    else:
        if inverse:
            out = stack_real_imag(tf.ifft2d(x_complex)) * h * w
        else:
            out = stack_real_imag(tf.fft2d(x_complex))
        return out 
開發者ID:tdeboissiere,項目名稱:DeepLearningImplementations,代碼行數:22,代碼來源:scattering.py

示例14: reduce_mean_angle

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def reduce_mean_angle(weights, angles, use_complex=False, name=None):
    """ Computes the weighted mean of angles. Accepts option to compute use complex exponentials or real numbers.

        Complex number-based version is giving wrong gradients for some reason, but forward calculation is fine.

        See https://en.wikipedia.org/wiki/Mean_of_circular_quantities

    Args:
        weights: [BATCH_SIZE, NUM_ANGLES]
        angles:  [NUM_ANGLES, NUM_DIHEDRALS]

    Returns:
                 [BATCH_SIZE, NUM_DIHEDRALS]

    """

    with tf.name_scope(name, 'reduce_mean_angle', [weights, angles]) as scope:
        weights = tf.convert_to_tensor(weights, name='weights')
        angles  = tf.convert_to_tensor(angles,  name='angles')

        if use_complex:
            # use complexed-valued exponentials for calculation
            cwts =        tf.complex(weights, 0.) # cast to complex numbers
            exps = tf.exp(tf.complex(0., angles)) # convert to point on complex plane

            unit_coords = tf.matmul(cwts, exps) # take the weighted mixture of the unit circle coordinates

            return tf.angle(unit_coords, name=scope) # return angle of averaged coordinate

        else:
            # use real-numbered pairs of values
            sins = tf.sin(angles)
            coss = tf.cos(angles)

            y_coords = tf.matmul(weights, sins)
            x_coords = tf.matmul(weights, coss)

            return tf.atan2(y_coords, x_coords, name=scope) 
開發者ID:aqlaboratory,項目名稱:rgn,代碼行數:40,代碼來源:geom_ops.py

示例15: random

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import complex [as 別名]
def random(self, *shapes, **kwargs):
        if all(isinstance(i, int) for i in shapes):
            if kwargs.get("complex", False):
                return (self.random(*shapes) + 1j * self.random(*shapes)).astype(np.complex64)
            else:
                return np.random.rand(*shapes)
        else:
            return tuple(self.random(*shape) for shape in shapes) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:10,代碼來源:ops.py


注:本文中的tensorflow.complex方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。