當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.where方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.where方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.where方法的具體用法?Python v1.where怎麽用?Python v1.where使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.where方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def _build(self, x, state):
    prev_keep_mask = state
    shape = tf.shape(x)
    noise = tf.random_uniform(shape, dtype=x.dtype)
    other_mask = tf.floor(self._keep_prob + noise)
    choice_noise = tf.random_uniform(shape, dtype=x.dtype)
    choice = tf.less(choice_noise, self._flip_prob)
    # KLUDGE(melisgl): The client has to pass the last keep_mask from
    # a batch to the next so the mask may end up next to some
    # recurrent cell state. This state is often zero at the beginning
    # and may be periodically zeroed (per example) during training.
    # While zeroing LSTM state is okay, zeroing the dropout mask is
    # not. So instead of forcing every client to deal with this common
    # (?) case, if an all zero mask is detected, then regenerate a
    # fresh mask. This is of course a major hack and won't help with
    # learnt initial states, for example.
    sum_ = tf.reduce_sum(prev_keep_mask, 1, keepdims=True)
    is_initializing = tf.equal(sum_, 0.0)

    self._keep_mask = tf.where(tf.logical_or(choice, is_initializing),
                               other_mask,
                               prev_keep_mask)
    self._time_step += 1
    return x * self._keep_mask / self._keep_prob * self._scaler 
開發者ID:deepmind,項目名稱:lamb,代碼行數:26,代碼來源:dropout.py

示例2: _distributional_to_value

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def _distributional_to_value(value_d, size, subscale, threshold):
  """Get a scalar value out of a value distribution in distributional RL."""
  half = size // 2
  value_range = (tf.to_float(tf.range(-half, half)) + 0.5) * subscale
  probs = tf.nn.softmax(value_d)

  if threshold == 0.0:
    return tf.reduce_sum(probs * value_range, axis=-1)

  # accumulated_probs[..., i] is the sum of probabilities in buckets upto i
  # so it is the probability that value <= i'th bucket value
  accumulated_probs = tf.cumsum(probs, axis=-1)
  # New probs are 0 on all lower buckets, until the threshold
  probs = tf.where(accumulated_probs < threshold, tf.zeros_like(probs), probs)
  probs /= tf.reduce_sum(probs, axis=-1, keepdims=True)  # Re-normalize.
  return tf.reduce_sum(probs * value_range, axis=-1) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:ppo.py

示例3: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def __init__(self, pad_mask):
    """Compute and store the location of the padding.

    Args:
      pad_mask (tf.Tensor): Reference padding tensor of shape
        [batch_size,length] or [dim_origin] (dim_origin=batch_size*length)
        containing non-zeros positive values to indicate padding location.
    """
    self.nonpad_ids = None
    self.dim_origin = None

    with tf.name_scope("pad_reduce/get_ids"):
      pad_mask = tf.reshape(pad_mask, [-1])  # Flatten the batch
      # nonpad_ids contains coordinates of zeros rows (as pad_mask is
      # float32, checking zero equality is done with |x| < epsilon, with
      # epsilon=1e-9 as standard, here pad_mask only contains positive values
      # so tf.abs would be redundant)
      self.nonpad_ids = tf.to_int32(tf.where(pad_mask < 1e-9))
      self.dim_origin = tf.shape(pad_mask)[:1] 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:expert_utils.py

示例4: body

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def body(self, features):
    """Computes the targets' pre-logit activations given transformed inputs.

    Most `T2TModel` subclasses will override this method.

    Args:
      features: dict of str to Tensor, where each Tensor has shape [batch_size,
        ..., hidden_size]. It typically contains keys `inputs` and `targets`.

    Returns:
      output: Tensor of pre-logit activations with shape [batch_size, ...,
              hidden_size].
      losses: Either single loss as a scalar, a list, a Tensor (to be averaged),
              or a dictionary of losses. If losses is a dictionary with the key
              "training", losses["training"] is considered the final training
              loss and output is considered logits; self.top and self.loss will
              be skipped.
    """
    raise NotImplementedError("Abstract Method") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:t2t_model.py

示例5: _mix_tokens

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def _mix_tokens(p_sample, gold_targets, sampled_targets):
  """Interleave sampled and gold tokens randomly.

  Args:
    p_sample: float in [0, 1]. Probability a token will come from
      'sampled_targets'. 0 means all-gold, 1 means all-sampled.
    gold_targets: Tensor. Gold token IDs.
    sampled_targets: Tensor. Sampled token IDs. Same shape as 'gold_targets'.

  Returns:
    Tensor of same shape as 'gold_targets' containing a mix of tokens from
    'gold_targets' and 'sampled_targets'.
  """
  targets_shape = common_layers.shape_list(sampled_targets)
  return tf.where(
      tf.less(tf.random_uniform(targets_shape), p_sample),
      sampled_targets, gold_targets) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:scheduled_sampling.py

示例6: _randomized_roundoff_to_bfloat16

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2):
  """Round-off x to cand1 or to cand2 in an unbiased way.

  Cand1 and cand2 are the same shape as x.
  For every element of x, the corresponding elements of cand1 and cand2 should
  be the two closest bfloat16 values to x.  Order does not matter.
  cand1 and cand2 must differ from each other.

  Args:
    x: A float32 Tensor.
    noise: A Tensor broadcastable to the shape of x containing
    random uniform values in [0.0, 1.0].
    cand1: A bfloat16 Tensor the same shape as x.
    cand2: A bfloat16 Tensor the same shape as x.

  Returns:
    A bfloat16 Tensor.
  """
  cand1_f = tf.to_float(cand1)
  cand2_f = tf.to_float(cand2)
  step_size = cand2_f - cand1_f
  fpart = (x - cand1_f) / step_size
  ret = tf.where(tf.greater(fpart, noise), cand2, cand1)
  return ret 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:quantization.py

示例7: _to_bfloat16_unbiased

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def _to_bfloat16_unbiased(x, noise):
  """Convert a float32 to a bfloat16 using randomized roundoff.

  Args:
    x: A float32 Tensor.
    noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x)
  Returns:
    A float32 Tensor.
  """
  x_sign = tf.sign(x)
  # Make sure x is positive.  If it is zero, the two candidates are identical.
  x = x * x_sign + 1e-30
  cand1 = tf.to_bfloat16(x)
  cand1_f = tf.to_float(cand1)
  # This relies on the fact that for a positive bfloat16 b,
  # b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the
  # next lower one. Both 1.005 and 0.995 are ballpark estimation.
  cand2 = tf.to_bfloat16(
      tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995))
  ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2)
  return ret * tf.to_bfloat16(x_sign) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:23,代碼來源:quantization.py

示例8: neural_gpu_body

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def neural_gpu_body(inputs, hparams, name=None):
  """The core Neural GPU."""
  with tf.variable_scope(name, "neural_gpu"):

    def step(state, inp):  # pylint: disable=missing-docstring
      x = tf.nn.dropout(state, 1.0 - hparams.dropout)
      for layer in range(hparams.num_hidden_layers):
        x = common_layers.conv_gru(
            x, (hparams.kernel_height, hparams.kernel_width),
            hparams.hidden_size,
            name="cgru_%d" % layer)
      # Padding input is zeroed-out in the modality, we check this by summing.
      padding_inp = tf.less(tf.reduce_sum(tf.abs(inp), axis=[1, 2]), 0.00001)
      new_state = tf.where(padding_inp, state, x)  # No-op where inp is padding.
      return new_state

    return tf.foldl(
        step,
        tf.transpose(inputs, [1, 0, 2, 3]),
        initializer=inputs,
        parallel_iterations=1,
        swap_memory=True) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:neural_gpu.py

示例9: scale_gaussian_prior

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def scale_gaussian_prior(name, z, logscale_factor=3.0, trainable=True):
  """Returns N(s^i * z^i, std^i) where s^i and std^i are pre-component.

  s^i is a learnable parameter with identity initialization.
  std^i is optionally learnable with identity initialization.

  Args:
    name: variable scope.
    z: input_tensor
    logscale_factor: equivalent to scaling up the learning_rate by a factor
                     of logscale_factor.
    trainable: Whether or not std^i is learnt.
  """
  with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
    z_shape = common_layers.shape_list(z)
    latent_multiplier = tf.get_variable(
        "latent_multiplier", shape=z_shape, dtype=tf.float32,
        initializer=tf.ones_initializer())
    log_scale = tf.get_variable(
        "log_scale_latent", shape=z_shape, dtype=tf.float32,
        initializer=tf.zeros_initializer(), trainable=trainable)
    log_scale = log_scale * logscale_factor
    return tfp.distributions.Normal(
        loc=latent_multiplier * z, scale=tf.exp(log_scale)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:glow_ops.py

示例10: shape_list

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def shape_list(x):
  """Return list of dims, statically where possible."""
  x = tf.convert_to_tensor(x)

  # If unknown rank, return dynamic shape
  if x.get_shape().dims is None:
    return tf.shape(x)

  static = x.get_shape().as_list()
  shape = tf.shape(x)

  ret = []
  for i, dim in enumerate(static):
    if dim is None:
      dim = shape[i]
    ret.append(dim)
  return ret 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:common_layers.py

示例11: _select_top_k

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def _select_top_k(logits, top_k):
  """Replaces logits, expect the top k highest values, with small number (-1e6).

  If k is -1 don't replace anything.

  Args:
    logits: A `Tensor` of shape [batch_size, ..., vocab_size]
    top_k: vector of batch size.

  Returns:
    A `Tensor` with same shape  as logits.
  """
  vocab_size = logits.shape[-1]

  top_k = tf.where(
      tf.not_equal(top_k, -1), top_k,
      tf.ones_like(top_k) * vocab_size)

  return tf.where(
      tf.argsort(logits) < tf.reshape(top_k, [-1] + [1] *
                                      (len(logits.shape) - 1)), logits,
      tf.ones_like(logits) * -1e6) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:common_layers.py

示例12: vae

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def vae(x, z_size, name=None):
  """Simple variational autoencoder without discretization.

  Args:
    x: Input to the discretization bottleneck.
    z_size: Number of bits, where discrete codes range from 1 to 2**z_size.
    name: Name for the bottleneck scope.

  Returns:
    Embedding function, latent, loss, mu and log_simga.
  """
  with tf.variable_scope(name, default_name="vae"):
    mu = tf.layers.dense(x, z_size, name="mu")
    log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
    shape = common_layers.shape_list(x)
    epsilon = tf.random_normal([shape[0], shape[1], 1, z_size])
    z = mu + tf.exp(log_sigma / 2) * epsilon
    kl = 0.5 * tf.reduce_mean(
        tf.expm1(log_sigma) + tf.square(mu) - log_sigma, axis=-1)
    free_bits = z_size // 4
    kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
    return z, kl_loss, mu, log_sigma 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:discretization.py

示例13: scheduled_sample_prob

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def scheduled_sample_prob(ground_truth_x,
                          generated_x,
                          batch_size,
                          scheduled_sample_var):
  """Probability based scheduled sampling.

  Args:
    ground_truth_x: tensor of ground-truth data points.
    generated_x: tensor of generated data points.
    batch_size: batch size
    scheduled_sample_var: probability of choosing from ground_truth.
  Returns:
    New batch with randomly selected data points.
  """
  probability_threshold = scheduled_sample_var
  probability_of_generated = tf.random_uniform([batch_size])
  return tf.where(probability_of_generated > probability_threshold,
                  generated_x, ground_truth_x) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:common_video.py

示例14: _encode_gif

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def _encode_gif(images, fps):
  """Encodes numpy images into gif string.

  Args:
    images: A 4-D `uint8` `np.array` (or a list of 3-D images) of shape
      `[time, height, width, channels]` where `channels` is 1 or 3.
    fps: frames per second of the animation

  Returns:
    The encoded gif string.

  Raises:
    IOError: If the ffmpeg command returns an error.
  """
  writer = WholeVideoWriter(fps)
  writer.write_multi(images)
  return writer.finish() 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:common_video.py

示例15: testTensorMultiplierOfGradient

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import where [as 別名]
def testTensorMultiplierOfGradient(self):
    gradient = tf.constant(self._grad_vec, dtype=tf.float32)
    variable = variables_lib.Variable(tf.zeros_like(gradient))
    multiplier_flag = variables_lib.Variable(True)
    tensor_multiplier = tf.where(multiplier_flag, self._multiplier, 1.0)
    grad_to_var = (gradient, variable)
    gradient_multipliers = {variable: tensor_multiplier}

    [grad_to_var] = learning.multiply_gradients([grad_to_var],
                                                gradient_multipliers)

    with self.cached_session() as sess:
      sess.run(variables_lib.global_variables_initializer())
      gradient_true_flag = sess.run(grad_to_var[0])
      sess.run(multiplier_flag.assign(False))
      gradient_false_flag = sess.run(grad_to_var[0])
    np_testing.assert_almost_equal(gradient_true_flag,
                                   self._multiplied_grad_vec, 5)
    np_testing.assert_almost_equal(gradient_false_flag, self._grad_vec, 5) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:21,代碼來源:learning_test.py


注:本文中的tensorflow.compat.v1.where方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。