本文整理匯總了Python中tensorflow.compat.v1.unique方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.unique方法的具體用法?Python v1.unique怎麽用?Python v1.unique使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.unique方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testMergeBoxesWithEmptyInputs
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def testMergeBoxesWithEmptyInputs(self):
def graph_fn():
boxes = tf.zeros([0, 4], dtype=tf.float32)
class_indices = tf.constant([], dtype=tf.int32)
class_confidences = tf.constant([], dtype=tf.float32)
num_classes = 5
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes))
return (merged_boxes, merged_classes, merged_confidences,
merged_box_indices)
# Running on CPU only as tf.unique is not supported on TPU.
(np_merged_boxes, np_merged_classes, np_merged_confidences,
np_merged_box_indices) = self.execute_cpu(graph_fn, [])
self.assertAllEqual(np_merged_boxes.shape, [0, 4])
self.assertAllEqual(np_merged_classes.shape, [0, 5])
self.assertAllEqual(np_merged_confidences.shape, [0, 5])
self.assertAllEqual(np_merged_box_indices.shape, [0])
示例2: aggregate_sparse_indices
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def aggregate_sparse_indices(indices, values, shape, agg_fn="sum"):
"""Sums values corresponding to repeated indices.
Returns the unique indices and their summed values.
Args:
indices: [num_nnz, rank] Tensor.
values: [num_nnz] Tensor.
shape: [rank] Tensor.
agg_fn: Method to use for aggregation - `sum` or `max`.
Returns:
indices: [num_uniq, rank] Tensor.
values: [num_uniq] Tensor.
"""
# Linearize the indices.
scaling_vec = tf.cumprod(tf.cast(shape, indices.dtype), exclusive=True)
linearized = tf.linalg.matvec(indices, scaling_vec)
# Get the unique indices, and their positions in the array
y, idx = tf.unique(linearized)
# Use the positions of the unique values as the segment ids to
# get the unique values
idx.set_shape([None])
if agg_fn == "sum":
values = tf.unsorted_segment_sum(values, idx, tf.shape(y)[0])
elif agg_fn == "max":
values = tf.unsorted_segment_max(values, idx, tf.shape(y)[0])
# Go back to ND indices
y = tf.expand_dims(y, 1)
indices = tf.floormod(
tf.floordiv(y, tf.expand_dims(scaling_vec, 0)),
tf.cast(tf.expand_dims(shape, 0), indices.dtype))
return indices, values
示例3: select_slate_optimal
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def select_slate_optimal(slate_size, s_no_click, s, q):
"""Selects the slate using exhaustive search.
This algorithm corresponds to the method "OS" in
Ie et al. https://arxiv.org/abs/1905.12767.
Args:
slate_size: int, the size of the recommendation slate.
s_no_click: float tensor, the score for not clicking any document.
s: [num_of_documents] tensor, the scores for clicking documents.
q: [num_of_documents] tensor, the predicted q values for documents.
Returns:
[slate_size] tensor, the selected slate.
"""
num_candidates = s.shape.as_list()[0]
# Obtain all possible slates given current docs in the candidate set.
mesh_args = [list(range(num_candidates))] * slate_size
slates = tf.stack(tf.meshgrid(*mesh_args), axis=-1)
slates = tf.reshape(slates, shape=(-1, slate_size))
# Filter slates that include duplicates to ensure each document is picked
# at most once.
unique_mask = tf.map_fn(
lambda x: tf.equal(tf.size(input=x), tf.size(input=tf.unique(x)[0])),
slates,
dtype=tf.bool)
slates = tf.boolean_mask(tensor=slates, mask=unique_mask)
slate_q_values = tf.gather(s * q, slates)
slate_scores = tf.gather(s, slates)
slate_normalizer = tf.reduce_sum(
input_tensor=slate_scores, axis=1) + s_no_click
slate_q_values = slate_q_values / tf.expand_dims(slate_normalizer, 1)
slate_sum_q_values = tf.reduce_sum(input_tensor=slate_q_values, axis=1)
max_q_slate_index = tf.argmax(input=slate_sum_q_values)
return tf.gather(slates, max_q_slate_index, axis=0)
示例4: testMergeBoxesWithMultipleLabels
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def testMergeBoxesWithMultipleLabels(self):
def graph_fn():
boxes = tf.constant(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
[0.25, 0.25, 0.75, 0.75]],
dtype=tf.float32)
class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
num_classes = 5
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes))
return (merged_boxes, merged_classes, merged_confidences,
merged_box_indices)
expected_merged_boxes = np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32)
expected_merged_classes = np.array(
[[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32)
expected_merged_confidences = np.array(
[[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32)
expected_merged_box_indices = np.array([0, 1], dtype=np.int32)
# Running on CPU only as tf.unique is not supported on TPU.
(np_merged_boxes, np_merged_classes, np_merged_confidences,
np_merged_box_indices) = self.execute_cpu(graph_fn, [])
self.assertAllClose(np_merged_boxes, expected_merged_boxes)
self.assertAllClose(np_merged_classes, expected_merged_classes)
self.assertAllClose(np_merged_confidences, expected_merged_confidences)
self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
示例5: testMergeBoxesWithMultipleLabelsCornerCase
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def testMergeBoxesWithMultipleLabelsCornerCase(self):
def graph_fn():
boxes = tf.constant(
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1],
[1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]],
dtype=tf.float32)
class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32)
class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6],
dtype=tf.float32)
num_classes = 4
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes))
return (merged_boxes, merged_classes, merged_confidences,
merged_box_indices)
expected_merged_boxes = np.array(
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]],
dtype=np.float32)
expected_merged_classes = np.array(
[[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]],
dtype=np.int32)
expected_merged_confidences = np.array(
[[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0],
[0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32)
expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32)
# Running on CPU only as tf.unique is not supported on TPU.
(np_merged_boxes, np_merged_classes, np_merged_confidences,
np_merged_box_indices) = self.execute_cpu(graph_fn, [])
self.assertAllClose(np_merged_boxes, expected_merged_boxes)
self.assertAllClose(np_merged_classes, expected_merged_classes)
self.assertAllClose(np_merged_confidences, expected_merged_confidences)
self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
示例6: num_matched_rows
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def num_matched_rows(self):
"""Returns number (int32 scalar tensor) of matched rows."""
unique_rows, _ = tf.unique(self.matched_row_indices())
return tf.size(unique_rows)
示例7: compute_unique_class_ids
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def compute_unique_class_ids(class_ids):
"""Computes the unique class IDs of the episode containing `class_ids`.
Args:
class_ids: A 1D tensor representing class IDs, one per example in an
episode.
Returns:
A 1D tensor of the unique class IDs whose size is equal to the way of an
episode.
"""
return tf.unique(class_ids)[0]
示例8: test_shots
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def test_shots(self):
return compute_shot(self.way, self.test_labels)
# TODO(evcu) We should probably calculate way from unique labels, not
# class_ids.
示例9: compute_target_optimal_q
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def compute_target_optimal_q(reward, gamma, next_actions, next_q_values,
next_states, terminals):
"""Builds an op used as a target for the Q-value.
This algorithm corresponds to the method "OT" in
Ie et al. https://arxiv.org/abs/1905.12767..
Args:
reward: [batch_size] tensor, the immediate reward.
gamma: float, discount factor with the usual RL meaning.
next_actions: [batch_size, slate_size] tensor, the next slate.
next_q_values: [batch_size, num_of_documents] tensor, the q values of the
documents in the next step.
next_states: [batch_size, 1 + num_of_documents] tensor, the features for the
user and the docuemnts in the next step.
terminals: [batch_size] tensor, indicating if this is a terminal step.
Returns:
[batch_size] tensor, the target q values.
"""
scores, score_no_click = _get_unnormalized_scores(next_states)
# Obtain all possible slates given current docs in the candidate set.
slate_size = next_actions.get_shape().as_list()[1]
num_candidates = next_q_values.get_shape().as_list()[1]
mesh_args = [list(range(num_candidates))] * slate_size
slates = tf.stack(tf.meshgrid(*mesh_args), axis=-1)
slates = tf.reshape(slates, shape=(-1, slate_size))
# Filter slates that include duplicates to ensure each document is picked
# at most once.
unique_mask = tf.map_fn(
lambda x: tf.equal(tf.size(input=x), tf.size(input=tf.unique(x)[0])),
slates,
dtype=tf.bool)
# [num_of_slates, slate_size]
slates = tf.boolean_mask(tensor=slates, mask=unique_mask)
# [batch_size, num_of_slates, slate_size]
next_q_values_slate = tf.gather(next_q_values, slates, axis=1)
# [batch_size, num_of_slates, slate_size]
scores_slate = tf.gather(scores, slates, axis=1)
# [batch_size, num_of_slates]
batch_size = next_states.get_shape().as_list()[0]
score_no_click_slate = tf.reshape(
tf.tile(score_no_click,
tf.shape(input=slates)[:1]), [batch_size, -1])
# [batch_size, num_of_slates]
next_q_target_slate = tf.reduce_sum(
input_tensor=next_q_values_slate * scores_slate, axis=2) / (
tf.reduce_sum(input_tensor=scores_slate, axis=2) +
score_no_click_slate)
next_q_target_max = tf.reduce_max(input_tensor=next_q_target_slate, axis=1)
return reward + gamma * next_q_target_max * (1. -
tf.cast(terminals, tf.float32))
示例10: process_episode
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import unique [as 別名]
def process_episode(example_strings, class_ids, chunk_sizes, image_size,
support_decoder, query_decoder):
"""Processes an episode.
This function:
1) splits the batch of examples into "flush", "support", and "query" chunks,
2) throws away the "flush" chunk,
3) removes the padded dummy examples from the "support" and "query" chunks,
4) extracts and processes images out of the example strings, and
5) builds support and query targets (numbers from 0 to K-1 where K is the
number of classes in the episode) from the class IDs.
Args:
example_strings: 1-D Tensor of dtype str, tf.train.Example protocol buffers.
class_ids: 1-D Tensor of dtype int, class IDs (absolute wrt the original
dataset).
chunk_sizes: Tuple of ints representing the sizes the flush and additional
chunks.
image_size: int, desired image size used during decoding.
support_decoder: Decoder, used to decode support set images.
query_decoder: Decoder, used to decode query set images.
Returns:
support_images, support_labels, support_class_ids, query_images,
query_labels, query_class_ids: Tensors, batches of images, labels, and
(absolute) class IDs, for the support and query sets (respectively).
"""
# TODO(goroshin): Replace with `support_decoder.log_summary(name='support')`.
# TODO(goroshin): Eventually remove setting the image size here and pass it
# to the ImageDecoder constructor instead.
if isinstance(support_decoder, decoder.ImageDecoder):
log_data_augmentation(support_decoder.data_augmentation, 'support')
support_decoder.image_size = image_size
if isinstance(query_decoder, decoder.ImageDecoder):
log_data_augmentation(query_decoder.data_augmentation, 'query')
query_decoder.image_size = image_size
(support_strings, support_class_ids), (query_strings, query_class_ids) = \
flush_and_chunk_episode(example_strings, class_ids, chunk_sizes)
support_images = tf.map_fn(
support_decoder,
support_strings,
dtype=support_decoder.out_type,
back_prop=False)
query_images = tf.map_fn(
query_decoder,
query_strings,
dtype=query_decoder.out_type,
back_prop=False)
# Convert class IDs into labels in [0, num_ways).
_, support_labels = tf.unique(support_class_ids)
_, query_labels = tf.unique(query_class_ids)
return (support_images, support_labels, support_class_ids, query_images,
query_labels, query_class_ids)