當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.truncated_normal_initializer方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.truncated_normal_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.truncated_normal_initializer方法的具體用法?Python v1.truncated_normal_initializer怎麽用?Python v1.truncated_normal_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.truncated_normal_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: log_conv2d

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def log_conv2d(self, input_tensor, output_tensor, stride_height, stride_width,
                 filters, initializer, use_bias):
    """Log a conv2d call."""
    if self.model == 'resnet50_v1.5':
      assert stride_height == stride_width, (
          '--ml_perf_compliance_logging does not support convolutions where '
          'the stride height is not equal to the stride width. '
          'stride_height=%d, stride_width=%d' % (stride_height, stride_width))
      if isinstance(initializer, tf.truncated_normal_initializer) or (
          isinstance(initializer, tf.variance_scaling_initializer) and
          initializer.distribution == 'truncated_normal'):
        initializer = tags.TRUNCATED_NORMAL
      elif (isinstance(initializer, tf.glorot_uniform_initializer) or
            initializer is None):
        initializer = 'glorot_uniform'
      resnet_log_helper.log_conv2d(input_tensor, output_tensor, stride_width,
                                   filters, initializer, use_bias) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:19,代碼來源:mlperf.py

示例2: argscope

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def argscope(is_training=None, normalizer_fn=slim.layer_norm):
  """Default TF argscope used for convnet-based grasping models.

  Args:
    is_training: Whether this argscope is for training or inference.
    normalizer_fn: Which conv/fc normalizer to use.
  Returns:
    Dictionary of argument overrides.
  """
  with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training):
    with slim.arg_scope(
        [slim.conv2d, slim.fully_connected],
        weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
        activation_fn=tf.nn.relu,
        normalizer_fn=normalizer_fn):
      with slim.arg_scope(
          [slim.conv2d, slim.max_pool2d], stride=2, padding='VALID') as scope:
        return scope 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:20,代碼來源:tf_modules.py

示例3: _variable_with_weight_decay

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  var = _variable_on_cpu(name, shape,
                         tf.truncated_normal_initializer(stddev=stddev))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var 
開發者ID:tensorflow,項目名稱:privacy,代碼行數:24,代碼來源:deep_cnn.py

示例4: cifarnet_arg_scope

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def cifarnet_arg_scope(weight_decay=0.004):
  """Defines the default cifarnet argument scope.

  Args:
    weight_decay: The weight decay to use for regularizing the model.

  Returns:
    An `arg_scope` to use for the inception v3 model.
  """
  with slim.arg_scope(
      [slim.conv2d],
      weights_initializer=tf.truncated_normal_initializer(
          stddev=5e-2),
      activation_fn=tf.nn.relu):
    with slim.arg_scope(
        [slim.fully_connected],
        biases_initializer=tf.constant_initializer(0.1),
        weights_initializer=trunc_normal(0.04),
        weights_regularizer=slim.l2_regularizer(weight_decay),
        activation_fn=tf.nn.relu) as sc:
      return sc 
開發者ID:tensorflow,項目名稱:models,代碼行數:23,代碼來源:cifarnet.py

示例5: affine

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def affine(self,
             num_out_channels,
             input_layer=None,
             num_channels_in=None,
             bias=0.0,
             stddev=None,
             activation='relu'):
    if input_layer is None:
      input_layer = self.top_layer
    if num_channels_in is None:
      num_channels_in = self.top_size
    name = 'affine' + str(self.counts['affine'])
    self.counts['affine'] += 1
    with tf.variable_scope(name):
      init_factor = 2. if activation == 'relu' else 1.
      stddev = stddev or np.sqrt(init_factor / num_channels_in)
      kernel = self.get_variable(
          'weights', [num_channels_in, num_out_channels],
          self.variable_dtype, self.dtype,
          initializer=tf.truncated_normal_initializer(stddev=stddev))
      biases = self.get_variable('biases', [num_out_channels],
                                 self.variable_dtype, self.dtype,
                                 initializer=tf.constant_initializer(bias))
      mlperf.logger.log(key=mlperf.tags.MODEL_HP_DENSE,
                        value=num_out_channels)
      logits = tf.nn.xw_plus_b(input_layer, kernel, biases)
      if activation == 'relu':
        mlperf.logger.log(key=mlperf.tags.MODEL_HP_RELU)
        affine1 = tf.nn.relu(logits, name=name)
      elif activation == 'linear' or activation is None:
        affine1 = logits
      else:
        raise KeyError('Invalid activation type \'%s\'' % activation)
      self.top_layer = affine1
      self.top_size = num_out_channels
      return affine1 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:38,代碼來源:convnet_builder.py

示例6: trainable_initial_state

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def trainable_initial_state(batch_size, state_size, initial_state_init=None):
  """Make trainable initial state for an RNN cell with `state_size`."""
  def create_one(i, size):
    if initial_state_init is not None:
      initializer = initial_state_init
    else:
      initializer = tf.truncated_normal_initializer(mean=0.0, stddev=1)
    return get_batched_variable(
        'initial_state_t{}'.format(i), batch_size, size,
        initializer=initializer)
  flat_vars = [create_one(i, size)
               for i, size in enumerate(nest.flatten(state_size))]
  return nest.pack_sequence_as(state_size, flat_vars) 
開發者ID:deepmind,項目名稱:lamb,代碼行數:15,代碼來源:utils.py

示例7: pad_conv3d_lrelu

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def pad_conv3d_lrelu(self, activations, n_filters, kernel_size, strides,
                       scope):
    """Pad, apply 3-D convolution and leaky relu."""
    padding = [[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]]

    # tf.nn.conv3d accepts a list of 5 values for strides
    # with first and last value equal to 1
    if isinstance(strides, numbers.Integral):
      strides = [strides] * 3
    strides = [1] + strides + [1]

    # Filter_shape = [K, K, K, num_input, num_output]
    filter_shape = (
        [kernel_size]*3 + activations.shape[-1:].as_list() + [n_filters])

    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
      conv_filter = tf.get_variable(
          "conv_filter", shape=filter_shape,
          initializer=tf.truncated_normal_initializer(stddev=0.02))

      if self.hparams.use_spectral_norm:
        conv_filter, assign_op = common_layers.apply_spectral_norm(conv_filter)
        if self.is_training:
          tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, assign_op)

      padded = tf.pad(activations, padding)
      convolved = tf.nn.conv3d(
          padded, conv_filter, strides=strides, padding="VALID")
      rectified = tf.nn.leaky_relu(convolved, alpha=0.2)
    return rectified 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:32,代碼來源:savp.py

示例8: apply_spectral_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def apply_spectral_norm(x):
  """Normalizes x using the spectral norm.

  The implementation follows Algorithm 1 of
  https://arxiv.org/abs/1802.05957. If x is not a 2-D Tensor, then it is
  reshaped such that the number of channels (last-dimension) is the same.

  Args:
    x: Tensor with the last dimension equal to the number of filters.

  Returns:
    x: Tensor with the same shape as x normalized by the spectral norm.
    assign_op: Op to be run after every step to update the vector "u".
  """
  weights_shape = shape_list(x)
  other, num_filters = tf.reduce_prod(weights_shape[:-1]), weights_shape[-1]

  # Reshape into a 2-D matrix with outer size num_filters.
  weights_2d = tf.reshape(x, (other, num_filters))

  # v = Wu / ||W u||
  with tf.variable_scope("u", reuse=tf.AUTO_REUSE):
    u = tf.get_variable(
        "u", [num_filters, 1],
        initializer=tf.truncated_normal_initializer(),
        trainable=False)
  v = tf.nn.l2_normalize(tf.matmul(weights_2d, u))

  # u_new = vW / ||v W||
  u_new = tf.nn.l2_normalize(tf.matmul(tf.transpose(v), weights_2d))

  # s = v*W*u
  spectral_norm = tf.squeeze(
      tf.matmul(tf.transpose(v), tf.matmul(weights_2d, tf.transpose(u_new))))

  # set u equal to u_new in the next iteration.
  assign_op = tf.assign(u, tf.transpose(u_new))
  return tf.divide(x, spectral_norm), assign_op 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:40,代碼來源:common_layers.py

示例9: instance_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def instance_norm(x):
  """Instance normalization layer."""
  with tf.variable_scope("instance_norm"):
    epsilon = 1e-5
    mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
    scale = tf.get_variable(
        "scale", [x.get_shape()[-1]],
        initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02))
    offset = tf.get_variable(
        "offset", [x.get_shape()[-1]], initializer=tf.constant_initializer(0.0))
    out = scale * tf.div(x - mean, tf.sqrt(var + epsilon)) + offset

    return out 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:15,代碼來源:common_layers.py

示例10: general_conv

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def general_conv(x,
                 num_filters=64,
                 filter_size=7,
                 stride=1,
                 stddev=0.02,
                 padding="VALID",
                 name="conv",
                 do_norm="instance",
                 do_relu=True,
                 relufactor=0):
  """Generalized convolution layer."""
  with tf.variable_scope(name):
    x = layers().Conv2D(
        num_filters,
        filter_size,
        stride,
        padding,
        activation=None,
        kernel_initializer=tf.truncated_normal_initializer(stddev=stddev),
        bias_initializer=tf.constant_initializer(0.0))(x)
    if do_norm == "layer":
      x = layer_norm(x)
    elif do_norm == "instance":
      x = instance_norm(x)

    if do_relu:
      if relufactor == 0:
        x = tf.nn.relu(x, "relu")
      else:
        x = lrelu(x, leak=relufactor)

    return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:34,代碼來源:common_layers.py

示例11: create_initializer

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def create_initializer(initializer_range=0.02):
    """Creates a `truncated_normal_initializer` with the given range."""
    return tf.truncated_normal_initializer(stddev=initializer_range) 
開發者ID:imcaspar,項目名稱:gpt2-ml,代碼行數:5,代碼來源:modeling.py

示例12: create_initializer

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def create_initializer(initializer_range=0.02):
  """Creates a `truncated_normal_initializer` with the given range."""
  return tf.truncated_normal_initializer(stddev=initializer_range) 
開發者ID:google-research,項目名稱:albert,代碼行數:5,代碼來源:modeling.py

示例13: create_v1_model

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def create_v1_model(albert_config, is_training, input_ids, input_mask,
                    segment_ids, use_one_hot_embeddings, use_einsum,
                    hub_module):
  """Creates a classification model."""
  (_, final_hidden) = fine_tuning_utils.create_albert(
      albert_config=albert_config,
      is_training=is_training,
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      use_one_hot_embeddings=use_one_hot_embeddings,
      use_einsum=use_einsum,
      hub_module=hub_module)

  final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
  batch_size = final_hidden_shape[0]
  seq_length = final_hidden_shape[1]
  hidden_size = final_hidden_shape[2]

  output_weights = tf.get_variable(
      "cls/squad/output_weights", [2, hidden_size],
      initializer=tf.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.get_variable(
      "cls/squad/output_bias", [2], initializer=tf.zeros_initializer())

  final_hidden_matrix = tf.reshape(final_hidden,
                                   [batch_size * seq_length, hidden_size])
  logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
  logits = tf.nn.bias_add(logits, output_bias)

  logits = tf.reshape(logits, [batch_size, seq_length, 2])
  logits = tf.transpose(logits, [2, 0, 1])

  unstacked_logits = tf.unstack(logits, axis=0)

  (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])

  return (start_logits, end_logits) 
開發者ID:google-research,項目名稱:albert,代碼行數:41,代碼來源:squad_utils.py

示例14: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def __init__(self, num_dims, num_hidden, internal_bias=False, name='nade'):
    self._num_dims = num_dims
    self._num_hidden = num_hidden

    std = 1.0 / math.sqrt(self._num_dims)
    initializer = tf.truncated_normal_initializer(stddev=std)

    with tf.variable_scope(name):
      # Encoder weights (`V` in [1]).
      self.w_enc = tf.get_variable(
          'w_enc',
          shape=[self._num_dims, 1, self._num_hidden],
          initializer=initializer)
      # Transposed decoder weights (`W'` in [1]).
      self.w_dec_t = tf.get_variable(
          'w_dec_t',
          shape=[self._num_dims, self._num_hidden, 1],
          initializer=initializer)
      # Internal encoder bias term (`b` in [1]). Will be used if external biases
      # are not provided.
      if internal_bias:
        self.b_enc = tf.get_variable(
            'b_enc',
            shape=[1, self._num_hidden],
            initializer=initializer)
      else:
        self.b_enc = None
      # Internal decoder bias term (`c` in [1]). Will be used if external biases
      # are not provided.
      if internal_bias:
        self.b_dec = tf.get_variable(
            'b_dec',
            shape=[1, self._num_dims],
            initializer=initializer)
      else:
        self.b_dec = None 
開發者ID:magenta,項目名稱:magenta,代碼行數:38,代碼來源:nade.py

示例15: __call__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import truncated_normal_initializer [as 別名]
def __call__(self, reduced_dims, new_dims):
    fan_in = mtf.list_product(d.size for d in reduced_dims)
    fan_out = mtf.list_product(d.size for d in new_dims)
    scale = self.scale
    if self.mode == "fan_in":
      if not unit_scaling_convention():
        scale /= max(1., fan_in)
    elif self.mode == "fan_out":
      if unit_scaling_convention():
        raise ValueError("Unit scaling convention only works with \"fan_in\"")
      scale /= max(1., fan_out)
    elif self.mode == "fan_avg":
      if unit_scaling_convention():
        raise ValueError("Unit scaling convention only works with \"fan_in\"")
      scale /= max(1., float(fan_in + fan_out) / 2)
    else:
      raise ValueError(
          "Invalid `mode` argument: "
          "expected on of {\"fan_in\", \"fan_out\", \"fan_avg\"} "
          "but got %s" % (self.mode,))
    stddev = scale ** 0.5
    if self.distribution == "normal":
      return tf.truncated_normal_initializer(stddev=stddev)
    elif self.distribution == "uniform":
      limit = stddev * 3. ** 0.5
      return tf.random_uniform_initializer(minval=-limit, maxval=limit)
    else:
      raise ValueError("Invalid `distribution` argument: "
                       "expected one of {\"normal\", \"uniform\"} "
                       "but got %s" % (self.distribution,)) 
開發者ID:tensorflow,項目名稱:mesh,代碼行數:32,代碼來源:layers.py


注:本文中的tensorflow.compat.v1.truncated_normal_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。