當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.transpose方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.transpose方法的具體用法?Python v1.transpose怎麽用?Python v1.transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.transpose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_tiled_linear

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def _build_tiled_linear(self, inputs, input_name_and_sizes,
                          output_name_and_sizes, add_bias):
    results = []
    for output_name, output_size in output_name_and_sizes:
      r = 0.0
      for input_, (input_name, input_size) in zip(inputs, input_name_and_sizes):
        name = 'W_{}_{}'.format(input_name, output_name)
        weight = self._get_variable(
            name, shape=[output_size, input_size])
        r += tf.sparse_tensor_dense_matmul(weight, input_, adjoint_b=True)
      r = tf.transpose(r)
      if add_bias:
        # Biases are dense, hence we call _get_variable of the base
        # class.
        r += super(SparseTiledLinear, self)._get_variable(
            'B_{}'.format(output_name), shape=[output_size],
            default_initializer=tf.zeros_initializer())
      results.append(r)
    return results


# TODO(melisgl): Since computation is the same as in TiledLinear,
# perhaps this should be implemented as a custom getter (see
# tf.get_variable) instead of being tied to tiling. 
開發者ID:deepmind,項目名稱:lamb,代碼行數:26,代碼來源:tiled_linear.py

示例2: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def __init__(self, num_experts, gates):
    """Create a SparseDispatcher.

    Args:
      num_experts: an integer.
      gates: a `Tensor` of shape `[batch_size, num_experts]`.

    Returns:
      a SparseDispatcher
    """
    self._gates = gates
    self._num_experts = num_experts

    where = tf.to_int32(tf.where(tf.transpose(gates) > 0))
    self._expert_index, self._batch_index = tf.unstack(where, num=2, axis=1)
    self._part_sizes_tensor = tf.reduce_sum(tf.to_int32(gates > 0), [0])
    self._nonzero_gates = tf.gather(
        tf.reshape(self._gates, [-1]),
        self._batch_index * num_experts + self._expert_index) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:expert_utils.py

示例3: _update_timestep

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def _update_timestep(x, timestep, values):
  """Set x[:, timestep] = values.

  This operation is **NOT** differentiable.

  Args:
    x: Tensor of shape [batch_size, seq_len, ...]
    timestep: int or scalar Tensor. Index to update in x.
    values: Tensor of shape [batch_size, ...]. New values for x[:, i].

  Returns:
    Copy of 'x' after setting x[:, timestep] = values.
  """
  perm = range(x.shape.ndims)
  perm[0], perm[1] = perm[1], perm[0]
  x = tf.transpose(x, perm)
  x = inplace_ops.alias_inplace_update(x, timestep, values)
  x = tf.transpose(x, perm)
  return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:scheduled_sampling.py

示例4: neural_gpu_body

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def neural_gpu_body(inputs, hparams, name=None):
  """The core Neural GPU."""
  with tf.variable_scope(name, "neural_gpu"):

    def step(state, inp):  # pylint: disable=missing-docstring
      x = tf.nn.dropout(state, 1.0 - hparams.dropout)
      for layer in range(hparams.num_hidden_layers):
        x = common_layers.conv_gru(
            x, (hparams.kernel_height, hparams.kernel_width),
            hparams.hidden_size,
            name="cgru_%d" % layer)
      # Padding input is zeroed-out in the modality, we check this by summing.
      padding_inp = tf.less(tf.reduce_sum(tf.abs(inp), axis=[1, 2]), 0.00001)
      new_state = tf.where(padding_inp, state, x)  # No-op where inp is padding.
      return new_state

    return tf.foldl(
        step,
        tf.transpose(inputs, [1, 0, 2, 3]),
        initializer=inputs,
        parallel_iterations=1,
        swap_memory=True) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:neural_gpu.py

示例5: vq_nearest_neighbor

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def vq_nearest_neighbor(x, hparams):
  """Find the nearest element in means to elements in x."""
  bottleneck_size = 2**hparams.bottleneck_bits
  means = hparams.means
  x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
  means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
  scalar_prod = tf.matmul(x, means, transpose_b=True)
  dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
  if hparams.bottleneck_kind == "em":
    x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
    x_means_hot = tf.one_hot(
        x_means_idx, depth=bottleneck_size)
    x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
  else:
    x_means_idx = tf.argmax(-dist, axis=-1)
    x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
  x_means = tf.matmul(x_means_hot, means)
  e_loss = tf.reduce_mean(tf.squared_difference(x, tf.stop_gradient(x_means)))
  return x_means_hot, e_loss 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:transformer_nat.py

示例6: rank_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
  """Experimental rank loss, thanks to kkurach@ for the code."""
  with tf.name_scope("rank_loss"):
    # Normalize first as this is assumed in cosine similarity later.
    sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
    image_emb = tf.nn.l2_normalize(image_emb, 1)
    # Both sentence_emb and image_emb have size [batch, depth].
    scores = tf.matmul(image_emb, tf.transpose(sentence_emb))  # [batch, batch]
    diagonal = tf.diag_part(scores)  # [batch]
    cost_s = tf.maximum(0.0, margin - diagonal + scores)  # [batch, batch]
    cost_im = tf.maximum(
        0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores)  # [batch, batch]
    # Clear diagonals.
    batch_size = tf.shape(sentence_emb)[0]
    empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
    cost_s *= empty_diagonal_mat
    cost_im *= empty_diagonal_mat
    return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:slicenet.py

示例7: video_l1_top

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def video_l1_top(body_output, targets, model_hparams, vocab_size):
  """Top transformation for video."""
  del targets, vocab_size  # unused arg
  num_channels = model_hparams.problem.num_channels
  num_frames = model_hparams.video_num_target_frames
  with tf.variable_scope("rgb"):
    body_output_shape = common_layers.shape_list(body_output)
    res = tf.layers.dense(body_output, num_channels * num_frames, name="cast")
    res = tf.reshape(res, body_output_shape[:3] + [num_channels, num_frames])
    res = tf.transpose(res, [0, 4, 1, 2, 3])  # Move frames next to batch.
    if not tf.get_variable_scope().reuse:
      res_argmax = res[:, -1, :, :, :]
      tf.summary.image(
          "result",
          common_layers.tpu_safe_image_summary(res_argmax),
          max_outputs=1)
    return tf.expand_dims(res, axis=-1)  # Add an axis like in perplexity. 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:modalities.py

示例8: embedding_lookup

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def embedding_lookup(self, x, means):
    """Compute nearest neighbors and loss for training the embeddings.

    Args:
        x: Batch of encoder continuous latent states sliced/projected into
        shape
        [-1, num_blocks, block_dim].
        means: Embedding means.

    Returns:
        The nearest neighbor in one hot form, the nearest neighbor
        itself, the
        commitment loss, embedding training loss.
    """
    x_means_hot = self.nearest_neighbor(x, means)
    x_means_hot_flat = tf.reshape(
        x_means_hot, [-1, self.hparams.num_blocks, self.hparams.block_v_size])
    x_means = tf.matmul(tf.transpose(x_means_hot_flat, perm=[1, 0, 2]), means)
    x_means = tf.transpose(x_means, [1, 0, 2])
    q_loss = tf.reduce_mean(
        tf.squared_difference(tf.stop_gradient(x), x_means))
    e_loss = tf.reduce_mean(
        tf.squared_difference(x, tf.stop_gradient(x_means)))
    return x_means_hot, x_means, q_loss, e_loss 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:vq_discrete.py

示例9: project_hidden

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def project_hidden(x, projection_tensors, hidden_size, num_blocks):
  """Project encoder hidden state under num_blocks using projection tensors.

  Args:
    x: Encoder hidden state of shape [batch_size, latent_dim,  hidden_size].
    projection_tensors: Projection tensors used to project the hidden state.
    hidden_size: Dimension of the latent space.
    num_blocks: Number of blocks in DVQ.

  Returns:
    x_projected: Projected states of shape [batch_size, latent_dim, num_blocks,
      hidden_size / num_blocks].
  """
  batch_size, latent_dim, _ = common_layers.shape_list(x)
  x = tf.reshape(x, shape=[1, -1, hidden_size])
  x_tiled = tf.reshape(
      tf.tile(x, multiples=[num_blocks, 1, 1]),
      shape=[num_blocks, -1, hidden_size])
  x_projected = tf.matmul(x_tiled, projection_tensors)
  x_projected = tf.transpose(x_projected, perm=[1, 0, 2])
  x_4d = tf.reshape(x_projected, [batch_size, latent_dim, num_blocks, -1])
  return x_4d 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:discretization.py

示例10: _attention_projection_and_transpose

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def _attention_projection_and_transpose(x_flat, batch_size, seq_length, num_attention_heads, size_per_head,
                                        name, initializer_range=0.02):
    """
    :param x_flat: [batch_size*seq_length, width]
    :return: A fixed up tensor of size [batch_size, num_attention_heads, seq_length, size_per_head]
    """
    batch_size_seq_length, dim = get_shape_list(x_flat, expected_rank=2)

    if dim != size_per_head * num_attention_heads:
        raise ValueError("passed in a tensor of shape {} when size_per_head={} and num_attention_heads={}".format(
            (batch_size_seq_length, dim), size_per_head, num_attention_heads
        ))

    projected = tf.layers.dense(
        x_flat,
        num_attention_heads * size_per_head,
        name=name,
        kernel_initializer=create_initializer(initializer_range))

    projected = tf.reshape(
        projected, [batch_size, seq_length, num_attention_heads, size_per_head])
    output_tensor = tf.transpose(projected, [0, 2, 1, 3])
    return output_tensor 
開發者ID:imcaspar,項目名稱:gpt2-ml,代碼行數:25,代碼來源:modeling.py

示例11: _reshape_to_hierarchy

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def _reshape_to_hierarchy(self, t):
    """Reshapes `t` so that its initial dimensions match the hierarchy."""
    # Exclude the final, core decoder length.
    level_lengths = self._level_lengths[:-1]
    t_shape = t.shape.as_list()
    t_rank = len(t_shape)
    batch_size = t_shape[0]
    hier_shape = [batch_size] + level_lengths
    if t_rank == 3:
      hier_shape += [-1] + t_shape[2:]
    elif t_rank != 2:
      # We only expect rank-2 for lengths and rank-3 for sequences.
      raise ValueError('Unexpected shape for tensor: %s' % t)
    hier_t = tf.reshape(t, hier_shape)
    # Move the batch dimension to after the hierarchical dimensions.
    num_levels = len(level_lengths)
    perm = list(range(len(hier_shape)))
    perm.insert(num_levels, perm.pop(0))
    return tf.transpose(hier_t, perm) 
開發者ID:magenta,項目名稱:magenta,代碼行數:21,代碼來源:lstm_models.py

示例12: batch_to_time

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def batch_to_time(x, block_size):
  """Inverse of `time_to_batch(x, block_size)`.

  Args:
    x: Tensor of shape [nb*block_size, k, n] for some natural number k.
    block_size: number of time steps (i.e. size of dimension 1) in the output
      tensor.

  Returns:
    Tensor of shape [nb, k*block_size, n].
  """
  shape = x.get_shape().as_list()
  y = tf.reshape(x, [shape[0] // block_size, block_size, shape[1], shape[2]])
  y = tf.transpose(y, [0, 2, 1, 3])
  y = tf.reshape(y, [shape[0] // block_size, shape[1] * block_size, shape[2]])
  y.set_shape([mul_or_none(shape[0], 1. / block_size),
               mul_or_none(shape[1], block_size),
               shape[2]])
  return y 
開發者ID:magenta,項目名稱:magenta,代碼行數:21,代碼來源:masked.py

示例13: _transpose_batch_time

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def _transpose_batch_time(x):
  """Transposes the batch and time dimensions of a Tensor.

  If the input tensor has rank < 2 it returns the original tensor. Retains as
  much of the static shape information as possible.

  Args:
    x: A Tensor.

  Returns:
    x transposed along the first two dimensions.
  """
  x_static_shape = x.get_shape()
  if x_static_shape.rank is not None and x_static_shape.rank < 2:
    return x

  x_rank = tf.rank(x)
  x_t = tf.transpose(
      x, tf.concat(([1, 0], tf.range(2, x_rank)), axis=0))
  x_t.set_shape(
      tf.TensorShape(
          [x_static_shape[1], x_static_shape[0]]).concatenate(
              x_static_shape[2:]))
  return x_t 
開發者ID:magenta,項目名稱:magenta,代碼行數:26,代碼來源:seq2seq.py

示例14: categorical_sample

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def categorical_sample(logits, dtype=tf.int32,
                       sample_shape=(), seed=None):
  """Samples from categorical distribution."""
  logits = tf.convert_to_tensor(logits, name="logits")
  event_size = tf.shape(logits)[-1]
  batch_shape_tensor = tf.shape(logits)[:-1]
  def _sample_n(n):
    """Sample vector of categoricals."""
    if logits.shape.ndims == 2:
      logits_2d = logits
    else:
      logits_2d = tf.reshape(logits, [-1, event_size])
    sample_dtype = tf.int64 if logits.dtype.size > 4 else tf.int32
    draws = tf.multinomial(
        logits_2d, n, seed=seed, output_dtype=sample_dtype)
    draws = tf.reshape(
        tf.transpose(draws),
        tf.concat([[n], batch_shape_tensor], 0))
    return tf.cast(draws, dtype)
  return _call_sampler(_sample_n, sample_shape) 
開發者ID:magenta,項目名稱:magenta,代碼行數:22,代碼來源:seq2seq.py

示例15: intersection

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import transpose [as 別名]
def intersection(boxlist1, boxlist2, scope=None):
  """Compute pairwise intersection areas between boxes.

  Args:
    boxlist1: BoxList holding N boxes
    boxlist2: BoxList holding M boxes
    scope: name scope.

  Returns:
    a tensor with shape [N, M] representing pairwise intersections
  """
  with tf.name_scope(scope, 'Intersection'):
    y_min1, x_min1, y_max1, x_max1 = tf.split(
        value=boxlist1.get(), num_or_size_splits=4, axis=1)
    y_min2, x_min2, y_max2, x_max2 = tf.split(
        value=boxlist2.get(), num_or_size_splits=4, axis=1)
    all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
    all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
    intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
    all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
    all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
    intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
    return intersect_heights * intersect_widths 
開發者ID:JunweiLiang,項目名稱:Object_Detection_Tracking,代碼行數:25,代碼來源:region_similarity_calculator.py


注:本文中的tensorflow.compat.v1.transpose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。