當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.tile方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.tile方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.tile方法的具體用法?Python v1.tile怎麽用?Python v1.tile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.tile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _prepare_indexes

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def _prepare_indexes(self, shape, channels=None):
    shape = tf.convert_to_tensor(shape)

    if not self.built:
      if not (shape.shape.is_fully_defined() and shape.shape.ndims == 1):
        raise ValueError("`shape` must be a vector with known length.")
      ndim = shape.shape.as_list()[0] + 1
      channel_axis = self._channel_axis(ndim)
      input_shape = ndim * [None]
      input_shape[channel_axis] = channels
      self.build(input_shape)

    _, channel_axis, channels, input_slices = self._get_input_dims()

    # TODO(jonycgn, ssjhv): Investigate broadcasting.
    indexes = tf.range(channels, dtype=tf.int32)
    indexes = tf.cast(indexes, tf.int32)
    tiles = tf.concat(
        [shape[:channel_axis - 1], [1], shape[channel_axis:]], axis=0)
    indexes = tf.tile(indexes[input_slices[1:]], tiles)

    return indexes

  # Just giving a more useful docstring. 
開發者ID:tensorflow,項目名稱:compression,代碼行數:26,代碼來源:entropy_models.py

示例2: multi_label_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def multi_label_loss(top_out, targets, model_hparams, vocab_size, weights_fn):
  """Average loss over the labels."""
  del vocab_size  # unused arg
  logits = top_out
  num_labels = tf.shape(targets)[1]
  logits = tf.tile(logits, [1, num_labels, 1, 1, 1])

  xent, weights = common_layers.padded_cross_entropy(
      logits,
      targets,
      model_hparams.label_smoothing,
      weights_fn=weights_fn,
      reduce_sum=False,
  )
  xent = tf.squeeze(xent, [2, 3])
  weights = tf.squeeze(weights, [2, 3])
  # average loss over all labels
  loss = tf.reduce_sum(xent, axis=1)
  weights = tf.reduce_sum(weights, axis=1)
  loss /= (weights + 1e-8)
  weights = tf.to_float(tf.greater(weights, 0.))

  return tf.reduce_sum(loss*weights), tf.reduce_sum(weights) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:25,代碼來源:modalities.py

示例3: project_hidden

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def project_hidden(x, projection_tensors, hidden_size, num_blocks):
  """Project encoder hidden state under num_blocks using projection tensors.

  Args:
    x: Encoder hidden state of shape [batch_size, latent_dim,  hidden_size].
    projection_tensors: Projection tensors used to project the hidden state.
    hidden_size: Dimension of the latent space.
    num_blocks: Number of blocks in DVQ.

  Returns:
    x_projected: Projected states of shape [batch_size, latent_dim, num_blocks,
      hidden_size / num_blocks].
  """
  batch_size, latent_dim, _ = common_layers.shape_list(x)
  x = tf.reshape(x, shape=[1, -1, hidden_size])
  x_tiled = tf.reshape(
      tf.tile(x, multiples=[num_blocks, 1, 1]),
      shape=[num_blocks, -1, hidden_size])
  x_projected = tf.matmul(x_tiled, projection_tensors)
  x_projected = tf.transpose(x_projected, perm=[1, 0, 2])
  x_4d = tf.reshape(x_projected, [batch_size, latent_dim, num_blocks, -1])
  return x_4d 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:discretization.py

示例4: reset

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def reset(self, entries_to_reset):
    """Reset the entries in the memory.

    Args:
      entries_to_reset: a 1D tensor.
    Returns:
      the reset op.
    """
    num_updates = tf.size(entries_to_reset)
    update_vals = tf.scatter_update(
        self.mem_vals, entries_to_reset,
        tf.tile(tf.expand_dims(
            tf.fill([self.memory_size, self.val_depth], .0), 0),
                [num_updates, 1, 1]))
    update_logits = tf.scatter_update(
        self.mean_logits, entries_to_reset,
        tf.tile(tf.expand_dims(
            tf.fill([self.memory_size], .0), 0),
                [num_updates, 1]))
    reset_op = tf.group([update_vals, update_logits])
    return reset_op 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:23,代碼來源:transformer_memory.py

示例5: tile_and_concat

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def tile_and_concat(image, latent, concat_latent=True):
  """Tile latent and concatenate to image across depth.

  Args:
    image: 4-D Tensor, (batch_size X height X width X channels)
    latent: 2-D Tensor, (batch_size X latent_dims)
    concat_latent: If set to False, the image is returned as is.

  Returns:
    concat_latent: 4-D Tensor, (batch_size X height X width X channels+1)
      latent tiled and concatenated to the image across the channels.
  """
  if not concat_latent:
    return image
  image_shape = common_layers.shape_list(image)
  latent_shape = common_layers.shape_list(latent)
  height, width = image_shape[1], image_shape[2]
  latent_dims = latent_shape[1]
  height_multiples = height // latent_dims
  pad = height - (height_multiples * latent_dims)
  latent = tf.reshape(latent, (-1, latent_dims, 1, 1))
  latent = tf.tile(latent, (1, height_multiples, width, 1))
  latent = tf.pad(latent, [[0, 0], [pad // 2, pad // 2], [0, 0], [0, 0]])
  return tf.concat([image, latent], axis=-1) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:common_video.py

示例6: identity_initializer

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def identity_initializer(shape, dtype=None, partition_info=None):
  """Fake weight initializer to initialize a 3x3 identity kernel."""
  del shape  # Unused.
  del dtype  # Unused.
  del partition_info  # Unused.

  # Start with a 3x3 kernel identity kernel.
  kernel = [[0, 0, 0],
            [0, 1, 0],
            [0, 0, 0]]

  # Expand and tile kernel to get a tensor with shape [3, 3, 5, 2].
  kernel = tf.expand_dims(kernel, axis=-1)
  kernel = tf.expand_dims(kernel, axis=-1)
  tensor = tf.tile(kernel, [1, 1, 5, 2])
  return tf.cast(tensor, dtype=tf.float32) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:18,代碼來源:depthwise_convolution_op_handler_test.py

示例7: upscale

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def upscale(images, scale):
  """Box upscaling (also called nearest neighbors) of images.

  Args:
    images: A 4D `Tensor` in NHWC format.
    scale: A positive integer scale.

  Returns:
    A 4D `Tensor` of `images` up scaled by a factor `scale`.

  Raises:
    ValueError: If `scale` is not a positive integer.
  """
  scale = _get_validated_scale(scale)
  if scale == 1:
    return images
  return tf.batch_to_space(
      tf.tile(images, [scale**2, 1, 1, 1]),
      crops=[[0, 0], [0, 0]],
      block_size=scale) 
開發者ID:magenta,項目名稱:magenta,代碼行數:22,代碼來源:layers.py

示例8: upscale_height

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def upscale_height(images, scale):
  """Box upscaling along the H (axis=1) dimension.

  Args:
    images: A 4D `Tensor` in NHWC format.
    scale: A positive integer scale.

  Returns:
    A 4D `Tensor` of `images` up scaled by a factor `scale`.

  Raises:
    ValueError: If `scale` is not a positive integer.
  """
  scale = _get_validated_scale(scale)
  if scale == 1:
    return images
  images = tf.batch_to_space_nd(
      tf.tile(images, [scale, 1, 1, 1]), block_shape=[scale], crops=[[0, 0]])
  return images 
開發者ID:magenta,項目名稱:magenta,代碼行數:21,代碼來源:layers.py

示例9: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def __init__(self, c, d=None, prune_irrelevant=True, collapse=True):
    """Builds a linear specification module."""
    super(LinearSpecification, self).__init__(name='specs', collapse=collapse)
    # c has shape [batch_size, num_specifications, num_outputs]
    # d has shape [batch_size, num_specifications]
    # Some specifications may be irrelevant (not a function of the output).
    # We automatically remove them for clarity. We expect the number of
    # irrelevant specs to be equal for all elements of a batch.
    # Shape is [batch_size, num_specifications]
    if prune_irrelevant:
      irrelevant = tf.equal(tf.reduce_sum(
          tf.cast(tf.abs(c) > 1e-6, tf.int32), axis=-1, keepdims=True), 0)
      batch_size = tf.shape(c)[0]
      num_outputs = tf.shape(c)[2]
      irrelevant = tf.tile(irrelevant, [1, 1, num_outputs])
      self._c = tf.reshape(
          tf.boolean_mask(c, tf.logical_not(irrelevant)),
          [batch_size, -1, num_outputs])
    else:
      self._c = c
    self._d = d 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:23,代碼來源:specification.py

示例10: tile_to_match_context

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def tile_to_match_context(net, context):
  """Tiles net along a new axis=1 to match context.

  Repeats minibatch elements of `net` tensor to match multiple corresponding
  minibatch elements from `context`.
  Args:
    net: Tensor of shape [num_batch_net, ....].
    context: Tensor of shape [num_batch_net, num_examples, context_size].
  Returns:
    Tensor of shape [num_batch_net, num_examples, ...], where each minibatch
    element of net has been tiled M times where M = num_batch_context /
    num_batch_net.
  """
  with tf.name_scope('tile_to_context'):
    num_samples = tf.shape(context)[1]
    net_examples = tf.expand_dims(net, 1)  # [batch_size, 1, ...]

    net_ndim = len(net_examples.get_shape().as_list())
    # Tile net by num_samples in axis=1.
    multiples = [1]*net_ndim
    multiples[1] = num_samples
    net_examples = tf.tile(net_examples, multiples)
  return net_examples 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:25,代碼來源:tf_modules.py

示例11: add_context

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def add_context(net, context):
  """Merges visual perception with context using elementwise addition.

  Actions are reshaped to match net dimension depth-wise, and are added to
  the conv layers by broadcasting element-wise across H, W extent.

  Args:
    net: Tensor of shape [batch_size, H, W, C].
    context: Tensor of shape [batch_size * num_examples, C].
  Returns:
    Tensor with shape [batch_size * num_examples, H, W, C]
  """
  num_batch_net = tf.shape(net)[0]
  _, h, w, d1 = net.get_shape().as_list()
  _, d2 = context.get_shape().as_list()
  assert d1 == d2
  context = tf.reshape(context, [num_batch_net, -1, d2])
  net_examples = tile_to_match_context(net, context)
  # Flatten first two dimensions.
  net = tf.reshape(net_examples, [-1, h, w, d1])
  context = tf.reshape(context, [-1, 1, 1, d2])
  context = tf.tile(context, [1, h, w, 1])
  net = tf.add_n([net, context])
  return net 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:26,代碼來源:tf_modules.py

示例12: linear_transform

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def linear_transform(x, output_size, scope, bias=False, input_size=None):
  """Simple linear transform of x.

  Args:
    x: <float>[batch_size, length, input_size]
    output_size: Integer specifying output size.
    scope: String name for variable scope.
    bias: If True, adds a learned bias term.
    input_size: Explicitly specify input_size if not set as static shape.

  Returns:
    <float>[batch_size, length, output_size]
  """
  input_size = input_size or x.get_shape()[-1]
  with tf.variable_scope(scope):
    batch_size = tf.shape(x)[0]
    weights = tf.get_variable("weights", shape=(input_size, output_size))
    weights = tf.expand_dims(weights, 0)
    weights = tf.tile(weights, [batch_size, 1, 1])
    x = tf.matmul(x, weights)
    if bias:
      bias = tf.get_variable(
          "bias", shape=(output_size), initializer=tf.zeros_initializer())
      x += bias
    return x 
開發者ID:google-research,項目名稱:language,代碼行數:27,代碼來源:common_layers.py

示例13: _one_hot_tensor_3d

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def _one_hot_tensor_3d(x, index, total_length):
  """One-hot encodes a 2d Tensor in a 3d Tensor.

  This could potentially be implemented in a simpler way using tf.pad but
  this method is compatible with XLA's restriction on static shapes defined
  by constants.

  Args:
    x: A Tensor of shape [m, n].
    index: The "on" index of the inner dimension of the output Tensor.
    total_length: Total length of the output Tensor.

  Returns:
    A Tensor of shape [m, n, total_length].
  """
  m = x.get_shape()[0]
  n = x.get_shape()[1]
  x = tf.expand_dims(x, 2)
  index_tiled = tf.tile(tf.expand_dims(index, 0), [m * n])
  one_hot = tf.one_hot(index_tiled, total_length, on_value=1)
  one_hot = tf.cast(one_hot, dtype=x.dtype)
  one_hot = tf.reshape(one_hot, [m, n, total_length])
  return one_hot * x 
開發者ID:google-research,項目名稱:language,代碼行數:25,代碼來源:beam_search.py

示例14: compute_thresholded_labels

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def compute_thresholded_labels(labels, null_threshold=4):
  """Computes thresholded labels.

  Args:
    labels: <int32> [batch_size, num_annotators]
    null_threshold: If number of null annotations is greater than or equal to
      this threshold, all annotations are set to null for this example.

  Returns:
    thresholded_labels: <int32> [batch_size, num_annotators]
  """
  null_labels = tf.equal(labels, 0)

  # <int32> [batch_size]
  null_count = tf.reduce_sum(tf.to_int32(null_labels), 1)
  threshold_mask = tf.less(null_count, null_threshold)

  # <bool> [batch_size, num_annotators]
  threshold_mask = tf.tile(
      tf.expand_dims(threshold_mask, -1), [1, tf.shape(labels)[1]])

  # <bool> [batch_size, num_annotators]
  thresholded_labels = tf.where(
      threshold_mask, x=labels, y=tf.zeros_like(labels))
  return thresholded_labels 
開發者ID:google-research,項目名稱:language,代碼行數:27,代碼來源:nq_long_utils.py

示例15: testPixelControlLossTensorDiscount

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tile [as 別名]
def testPixelControlLossTensorDiscount(self):
    """Compute loss for given observations, actions, values, tensor discount."""

    zero_discount = tf.zeros((1, self.batch_size))
    non_zero_discount = tf.tile(
        tf.reshape(self.discount, [1, 1]),
        [self.seq_length - 1, self.batch_size])
    tensor_discount = tf.concat([zero_discount, non_zero_discount], axis=0)
    loss, _ = pixel_control_ops.pixel_control_loss(
        self.observations_ph, self.actions_ph, self.action_values_ph,
        self.cell_size, tensor_discount, self.scale)
    init = tf.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init)
      feed_dict = {
          self.observations_ph: self.observations,
          self.action_values_ph: self.action_values,
          self.actions_ph: self.actions}
      loss_np = sess.run(loss, feed_dict=feed_dict)
      self.assertNear(loss_np, self.error_term, 1e-3) 
開發者ID:deepmind,項目名稱:trfl,代碼行數:23,代碼來源:pixel_control_ops_test.py


注:本文中的tensorflow.compat.v1.tile方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。