當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.tanh方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.tanh方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.tanh方法的具體用法?Python v1.tanh怎麽用?Python v1.tanh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.tanh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update_internal_states_early

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def update_internal_states_early(self, internal_states, frames):
    """Update the internal states early in the network in GRU-like way."""
    batch_size = common_layers.shape_list(frames[0])[0]
    internal_state = internal_states[0][0][:batch_size, :, :, :]
    state_activation = tf.concat([internal_state, frames[0]], axis=-1)
    state_gate_candidate = tf.layers.conv2d(
        state_activation, 2 * self.hparams.recurrent_state_size,
        (3, 3), padding="SAME", name="state_conv")
    state_gate, state_candidate = tf.split(state_gate_candidate, 2, axis=-1)
    state_gate = tf.nn.sigmoid(state_gate)
    state_candidate = tf.tanh(state_candidate)
    internal_state = internal_state * state_gate
    internal_state += state_candidate * (1.0 - state_gate)
    max_batch_size = max(_MAX_BATCH, self.hparams.batch_size)
    diff_batch_size = max_batch_size - batch_size
    internal_state = tf.pad(
        internal_state, [[0, diff_batch_size], [0, 0], [0, 0], [0, 0]])
    return [[internal_state]] 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:basic_stochastic.py

示例2: conv_lstm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def conv_lstm(x,
              kernel_size,
              filters,
              padding="SAME",
              dilation_rate=(1, 1),
              name=None,
              reuse=None):
  """Convolutional LSTM in 1 dimension."""
  with tf.variable_scope(
      name, default_name="conv_lstm", values=[x], reuse=reuse):
    gates = conv(
        x,
        4 * filters,
        kernel_size,
        padding=padding,
        dilation_rate=dilation_rate)
    g = tf.split(layer_norm(gates, 4 * filters), 4, axis=3)
    new_cell = tf.sigmoid(g[0]) * x + tf.sigmoid(g[1]) * tf.tanh(g[3])
    return tf.sigmoid(g[2]) * tf.tanh(new_cell) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:common_layers.py

示例3: tanh_discrete_bottleneck

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def tanh_discrete_bottleneck(x, bottleneck_bits, bottleneck_noise,
                             discretize_warmup_steps, mode):
  """Simple discretization through tanh, flip bottleneck_noise many bits."""
  x = tf.layers.dense(x, bottleneck_bits, name="tanh_discrete_bottleneck")
  d0 = tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x))) - 1.0
  if mode == tf.estimator.ModeKeys.TRAIN:
    x += tf.truncated_normal(
        common_layers.shape_list(x), mean=0.0, stddev=0.2)
  x = tf.tanh(x)
  d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
  if mode == tf.estimator.ModeKeys.TRAIN:
    noise = tf.random_uniform(common_layers.shape_list(x))
    noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
    d *= noise
  d = common_layers.mix(d, x, discretize_warmup_steps,
                        mode == tf.estimator.ModeKeys.TRAIN)
  return d, d0 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:discretization.py

示例4: generator_fn_specgram

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def generator_fn_specgram(inputs, **kwargs):
  """Builds generator network."""
  # inputs = (noises, one_hot_labels)
  with tf.variable_scope('generator_cond'):
    z = tf.concat(inputs, axis=1)
  if kwargs['to_rgb_activation'] == 'tanh':
    to_rgb_activation = tf.tanh
  elif kwargs['to_rgb_activation'] == 'linear':
    to_rgb_activation = lambda x: x
  fake_images, end_points = networks.generator(
      z,
      kwargs['progress'],
      lambda block_id: _num_filters_fn(block_id, **kwargs),
      kwargs['resolution_schedule'],
      num_blocks=kwargs['num_blocks'],
      kernel_size=kwargs['kernel_size'],
      colors=2,
      to_rgb_activation=to_rgb_activation,
      simple_arch=kwargs['simple_arch'])
  shape = fake_images.shape
  normalizer = data_normalizer.registry[kwargs['data_normalizer']](kwargs)
  fake_images = normalizer.denormalize_op(fake_images)
  fake_images.set_shape(shape)
  return fake_images, end_points 
開發者ID:magenta,項目名稱:magenta,代碼行數:26,代碼來源:network_functions.py

示例5: lstm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def lstm(xs, ms, s, scope, nh, init_scale=1.0):
    """lstm cell"""
    _, nin = [v.value for v in xs[0].get_shape()] # the first is nbatch
    with tf.variable_scope(scope):
        wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
        wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
        b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))

    c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
    for idx, (x, m) in enumerate(zip(xs, ms)):
        c = c*(1-m)
        h = h*(1-m)
        z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
        i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
        i = tf.nn.sigmoid(i)
        f = tf.nn.sigmoid(f)
        o = tf.nn.sigmoid(o)
        u = tf.tanh(u)
        c = f*c + i*u
        h = o*tf.tanh(c)
        xs[idx] = h
    s = tf.concat(axis=1, values=[c, h])
    return xs, s 
開發者ID:microsoft,項目名稱:nni,代碼行數:25,代碼來源:util.py

示例6: apply_highway_lstm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def apply_highway_lstm(x, seq_len):
  """Run a bi-directional LSTM with highway connections over `x`.

  Args:
    x: <tf.float32>[batch, seq_len, dim]
    seq_len: <tf.int32>[batch] for None, sequence lengths of `seq2`

  Returns:
    out, <tf.float32>[batch, seq_len, out_dim]
  """
  lstm_out = apply_lstm(x, seq_len)
  proj = ops.affine(x, FLAGS.lstm_dim * 4, "w", bias_name="b")
  gate, transform = tf.split(proj, 2, 2)
  gate = tf.sigmoid(gate)
  transform = tf.tanh(transform)
  return lstm_out * gate + (1 - gate) * transform 
開發者ID:google-research,項目名稱:language,代碼行數:18,代碼來源:run_recurrent_model_boolq.py

示例7: create_nn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def create_nn(self, features, name=None):

        if name is None:
            name = self.actor_name

        with tf.variable_scope(name + '_fc_1'):
            fc1 = layer(features, 64)
        with tf.variable_scope(name + '_fc_2'):
            fc2 = layer(fc1, 64)
        with tf.variable_scope(name + '_fc_3'):
            fc3 = layer(fc2, 64)
        with tf.variable_scope(name + '_fc_4'):
            fc4 = layer(fc3, self.action_space_size, is_output=True)

        output = tf.tanh(fc4) * self.action_space_bounds + self.action_offset

        return output 
開發者ID:andrew-j-levy,項目名稱:Hierarchical-Actor-Critc-HAC-,代碼行數:19,代碼來源:actor.py

示例8: create_nn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def create_nn(self, features, name=None):
        
        if name is None:
            name = self.actor_name

        with tf.variable_scope(name + '_fc_1'):
            fc1 = layer(features, 64)
        with tf.variable_scope(name + '_fc_2'):
            fc2 = layer(fc1, 64)
        with tf.variable_scope(name + '_fc_3'):
            fc3 = layer(fc2, 64)
        with tf.variable_scope(name + '_fc_4'):
            fc4 = layer(fc3, self.action_space_size, is_output=True)

        output = tf.tanh(fc4) * self.action_space_bounds + self.action_offset

        return output 
開發者ID:andrew-j-levy,項目名稱:Hierarchical-Actor-Critc-HAC-,代碼行數:19,代碼來源:actor.py

示例9: _make_net

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def _make_net(self, reg):
        '''
        Helper method to create a new net with a specified regularisation coefficient. The net is not
        initialised, so you must call init() or load() on it before any other method.

        Args:
            reg (float): Regularisation coefficient.
        '''
        def gelu_fast(_x):
            return 0.5 * _x * (1 + tf.tanh(tf.sqrt(2 / np.pi) * (_x + 0.044715 * tf.pow(_x, 3))))
        creator = lambda: SingleNeuralNet(
                    self.num_params,
                    [64]*5, [gelu_fast]*5,
                    0.2, # train_threshold_ratio
                    16, # batch_size
                    1., # keep_prob
                    reg,
                    self.losses_list,
                    learner_archive_dir=self.learner_archive_dir,
                    start_datetime=self.start_datetime)
        return SampledNeuralNet(creator, 1) 
開發者ID:michaelhush,項目名稱:M-LOOP,代碼行數:23,代碼來源:neuralnet.py

示例10: test_forward_unary

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def test_forward_unary():
    def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
        """test unary operators"""
        np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
        tf.reset_default_graph()
        with tf.Graph().as_default():
            in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
            out = op(in_data)
            compare_tf_with_tvm([np_data], ['in_data:0'], out.name)

    _test_forward_unary(tf.acos, -1, 1)
    _test_forward_unary(tf.asin, -1, 1)
    _test_forward_unary(tf.atanh, -1, 1)
    _test_forward_unary(tf.sinh)
    _test_forward_unary(tf.cosh)
    _test_forward_unary(tf.acosh)
    _test_forward_unary(tf.asinh)
    _test_forward_unary(tf.atan)
    _test_forward_unary(tf.sin)
    _test_forward_unary(tf.cos)
    _test_forward_unary(tf.tan)
    _test_forward_unary(tf.tanh)
    _test_forward_unary(tf.erf)
    _test_forward_unary(tf.log)
    _test_forward_unary(tf.log1p) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例11: feed_forward_gaussian_fun

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def feed_forward_gaussian_fun(action_space, config, observations):
  """Feed-forward Gaussian."""
  if not isinstance(action_space, gym.spaces.box.Box):
    raise ValueError("Expecting continuous action space.")

  mean_weights_initializer = tf.initializers.variance_scaling(
      scale=config.init_mean_factor)
  logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10)

  flat_observations = tf.reshape(observations, [
      tf.shape(observations)[0], tf.shape(observations)[1],
      functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)])

  with tf.variable_scope("network_parameters"):
    with tf.variable_scope("policy"):
      x = flat_observations
      for size in config.policy_layers:
        x = tf.layers.dense(x, size, activation=tf.nn.relu)
      mean = tf.layers.dense(
          x, action_space.shape[0], activation=tf.tanh,
          kernel_initializer=mean_weights_initializer)
      logstd = tf.get_variable(
          "logstd", mean.shape[2:], tf.float32, logstd_initializer)
      logstd = tf.tile(
          logstd[None, None],
          [tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2))
    with tf.variable_scope("value"):
      x = flat_observations
      for size in config.value_layers:
        x = tf.layers.dense(x, size, activation=tf.nn.relu)
      value = tf.layers.dense(x, 1)[..., 0]
  mean = tf.check_numerics(mean, "mean")
  logstd = tf.check_numerics(logstd, "logstd")
  value = tf.check_numerics(value, "value")

  policy = tfp.distributions.MultivariateNormalDiag(mean, tf.exp(logstd))

  return NetworkOutput(policy, value, lambda a: tf.clip_by_value(a, -2., 2)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:40,代碼來源:rl.py

示例12: gated_linear_map

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def gated_linear_map(self, inputs, suffix, bias_start_reset, in_units,
                       out_units):
    """Linear mapping with two reset gates.

    Args:
      inputs: Input tensor
      suffix: Linear map name suffix
      bias_start_reset: Bias start value for reset gate
      in_units: Size of input tensor feature map count
      out_units: Size of output tensor feature map count
    Return:
      tf.Tensor: Convolution apply to input tensor
    """

    def reset_gate(name):
      prefix = self.prefix + name + suffix
      reset = conv_linear_map(inputs, in_units * 2, in_units * 2,
                              bias_start_reset, prefix)
      return tf.nn.sigmoid(reset)

    in_shape = [self.batch_size, self.length // 2, in_units * 2]
    inputs = tf.reshape(inputs, in_shape)

    reset1 = reset_gate("/reset1/")
    reset2 = reset_gate("/reset2/")
    res1 = conv_linear_map(inputs * reset1, in_units * 2, out_units, 0.0,
                           self.prefix + "/cand1/" + suffix)
    res2 = conv_linear_map(inputs * reset2, in_units * 2, out_units, 0.0,
                           self.prefix + "/cand2/" + suffix)

    res = tf.concat([res1, res2], axis=2)
    res = tf.reshape(res, [self.batch_size, self.length, out_units])
    return tf.nn.tanh(res) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:35,代碼來源:shuffle_network.py

示例13: bottleneck

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def bottleneck(self, x):
    with tf.variable_scope("bottleneck"):
      hparams = self.hparams
      x = tf.layers.dense(x, hparams.bottleneck_bits, name="bottleneck")
      if hparams.mode == tf.estimator.ModeKeys.TRAIN:
        noise = 2.0 * tf.random_uniform(common_layers.shape_list(x)) - 1.0
        return tf.tanh(x) + noise * hparams.bottleneck_noise, 0.0
      return tf.tanh(x), 0.0 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:10,代碼來源:autoencoders.py

示例14: unstack

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def unstack(self, b, size, bottleneck_bits, name):
    with tf.variable_scope(name + "_unstack"):
      unb = self.unbottleneck(b, size)
      dec = self.decoder(unb)
      pred = tf.layers.dense(dec, bottleneck_bits, name="pred")
      pred_shape = common_layers.shape_list(pred)
      pred1 = tf.reshape(pred, pred_shape[:-1] + [-1, 2])
      x, y = tf.split(pred1, 2, axis=-1)
      x = tf.squeeze(x, axis=[-1])
      y = tf.squeeze(y, axis=[-1])
      gt = 2.0 * tf.to_float(tf.less(x, y)) - 1.0
      gtc = tf.tanh(y - x)
      gt += gtc - tf.stop_gradient(gtc)
      return gt, pred1 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:16,代碼來源:autoencoders.py

示例15: discriminator

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import tanh [as 別名]
def discriminator(x, compress, hparams, name, reuse=None):
  with tf.variable_scope(name, reuse=reuse):
    x = tf.stop_gradient(2 * x) - x  # Reverse gradient.
    if compress:
      x = transformer_vae.compress(x, None, False, hparams, "compress")
    else:
      x = transformer_vae.residual_conv(x, 1, 3, hparams, "compress_rc")
    y = tf.reduce_mean(x, axis=1)
    return tf.tanh(tf.layers.dense(y, 1, name="reduce")) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:11,代碼來源:cycle_gan.py


注:本文中的tensorflow.compat.v1.tanh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。