本文整理匯總了Python中tensorflow.compat.v1.subtract方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.subtract方法的具體用法?Python v1.subtract怎麽用?Python v1.subtract使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.subtract方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _flip_boxes_left_right
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def _flip_boxes_left_right(boxes):
"""Left-right flip the boxes.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
flipped_xmin = tf.subtract(1.0, xmax)
flipped_xmax = tf.subtract(1.0, xmin)
flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], 1)
return flipped_boxes
示例2: _get_cost_function
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def _get_cost_function(self):
"""Compute the cost of the Mittens objective function.
If self.mittens = 0, this is the same as the cost of GloVe.
"""
self.weights = tf.placeholder(
tf.float32, shape=[self.n_words, self.n_words])
self.log_coincidence = tf.placeholder(
tf.float32, shape=[self.n_words, self.n_words])
self.diffs = tf.subtract(self.model, self.log_coincidence)
cost = tf.reduce_sum(
0.5 * tf.multiply(self.weights, tf.square(self.diffs)))
if self.mittens > 0:
self.mittens = tf.constant(self.mittens, tf.float32)
cost += self.mittens * tf.reduce_sum(
tf.multiply(
self.has_embedding,
self._tf_squared_euclidean(
tf.add(self.W, self.C),
self.original_embedding)))
tf.summary.scalar("cost", cost)
return cost
示例3: _flip_boxes_left_right
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def _flip_boxes_left_right(boxes):
"""Left-right flip the boxes.
Args:
boxes: Float32 tensor containing the bounding boxes -> [..., 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each last dimension is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=-1)
flipped_xmin = tf.subtract(1.0, xmax)
flipped_xmax = tf.subtract(1.0, xmin)
flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], axis=-1)
return flipped_boxes
示例4: _flip_boxes_up_down
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def _flip_boxes_up_down(boxes):
"""Up-down flip the boxes.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
flipped_ymin = tf.subtract(1.0, ymax)
flipped_ymax = tf.subtract(1.0, ymin)
flipped_boxes = tf.concat([flipped_ymin, xmin, flipped_ymax, xmax], 1)
return flipped_boxes
示例5: test_forward_multi_input
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def test_forward_multi_input():
with tf.Graph().as_default():
in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1')
in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2')
in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3')
in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4')
out1 = tf.add(in1, in2, name='out1')
out2 = tf.subtract(in3, in4, name='out2')
out = tf.multiply(out1, out2, name='out')
in_data = np.arange(9, dtype='int32').reshape([3, 3])
compare_tf_with_tvm([in_data, in_data, in_data, in_data],
['in1:0', 'in2:0', 'in3:0', 'in4:0'], 'out:0')
#######################################################################
# Multi Output to Graph
# ---------------------
示例6: normalized_image
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def normalized_image(images):
# Rescale from [0, 255] to [0, 2]
images = tf.multiply(images, 1. / 127.5)
# Rescale to [-1, 1]
mlperf.logger.log(key=mlperf.tags.INPUT_MEAN_SUBTRACTION, value=[1.0] * 3)
return tf.subtract(images, 1.0)
示例7: compute_lengths
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def compute_lengths(symbols_list, eos_symbol, name=None,
dtype=tf.int64):
"""Computes sequence lengths given end-of-sequence symbol.
Args:
symbols_list: list of [batch_size] tensors of symbols (e.g. integers).
eos_symbol: end of sequence symbol (e.g. integer).
name: name for the name scope of this op.
dtype: type of symbols, default: tf.int64.
Returns:
Tensor [batch_size] of lengths of sequences.
"""
with tf.name_scope(name, 'compute_lengths'):
max_len = len(symbols_list)
eos_symbol_ = tf.constant(eos_symbol, dtype=dtype)
# Array with max_len-time where we have EOS, 0 otherwise. Maximum of this is
# the first EOS in that example.
ends = [tf.constant(max_len - i, dtype=tf.int64)
* tf.to_int64(tf.equal(s, eos_symbol_))
for i, s in enumerate(symbols_list)]
# Lengths of sequences, or max_len for sequences that didn't have EOS.
# Note: examples that don't have EOS will have max value of 0 and value of
# max_len+1 in lens_.
lens_ = max_len + 1 - tf.reduce_max(tf.stack(ends, 1), axis=1)
# For examples that didn't have EOS decrease max_len+1 to max_len as the
# length.
lens = tf.subtract(lens_, tf.to_int64(tf.equal(lens_, max_len + 1)))
return tf.stop_gradient(tf.reshape(lens, [-1]))
示例8: compute_area_features
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def compute_area_features(features, max_area_width, max_area_height=1, height=1,
epsilon=1e-6):
"""Computes features for each area.
Args:
features: a Tensor in a shape of [batch_size, height * width, depth].
max_area_width: the max width allowed for an area.
max_area_height: the max height allowed for an area.
height: the height of the image.
epsilon: the epsilon added to the variance for computing standard deviation.
Returns:
area_mean: A Tensor of shape [batch_size, num_areas, depth]
area_std: A Tensor of shape [batch_size, num_areas, depth]
area_sum: A Tensor of shape [batch_size, num_areas, depth]
area_heights: A Tensor of shape [batch_size, num_areas, 1]
area_widths: A Tensor of shape [batch_size, num_areas, 1]
"""
with tf.name_scope("compute_area_features"):
tf.logging.info("area_attention compute_area_features: %d x %d",
max_area_height, max_area_width)
area_sum, area_heights, area_widths = _compute_sum_image(
features, max_area_width=max_area_width,
max_area_height=max_area_height, height=height)
area_squared_sum, _, _ = _compute_sum_image(
tf.pow(features, 2), max_area_width=max_area_width,
max_area_height=max_area_height, height=height)
sizes = tf.multiply(area_heights, area_widths)
float_area_sizes = tf.to_float(sizes)
area_mean = tf.div(area_sum, float_area_sizes)
s2_n = tf.div(area_squared_sum, float_area_sizes)
area_variance = tf.subtract(s2_n, tf.pow(area_mean, 2))
area_std = tf.sqrt(tf.abs(area_variance) + epsilon)
return area_mean, area_std, area_sum, area_heights, area_widths
示例9: _mean_image_subtraction
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def _mean_image_subtraction(image, means):
"""Subtracts the given means from each image channel.
For example:
means = [123.68, 116.779, 103.939]
image = _mean_image_subtraction(image, means)
Note that the rank of `image` must be known.
Args:
image: a tensor of size [height, width, C].
means: a C-vector of values to subtract from each channel.
Returns:
the centered image.
Raises:
ValueError: If the rank of `image` is unknown, if `image` has a rank other
than three or if the number of channels in `image` doesn't match the
number of values in `means`.
"""
if image.get_shape().ndims != 3:
raise ValueError("Input must be of size [height, width, C>0]")
num_channels = image.get_shape().as_list()[-1]
if len(means) != num_channels:
raise ValueError("len(means) must match the number of channels")
channels = tf.split(axis=2, num_or_size_splits=num_channels, value=image)
for i in range(num_channels):
channels[i] -= means[i]
return tf.concat(axis=2, values=channels)
示例10: vqa_v2_preprocess_image
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def vqa_v2_preprocess_image(
image,
height,
width,
mode,
resize_side=512,
distort=True,
image_model_fn="resnet_v1_152",
):
"""vqa v2 preprocess image."""
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
assert resize_side > 0
if resize_side:
image = _aspect_preserving_resize(image, resize_side)
if mode == tf.estimator.ModeKeys.TRAIN:
image = tf.random_crop(image, [height, width, 3])
else:
# Central crop, assuming resize_height > height, resize_width > width.
image = tf.image.resize_image_with_crop_or_pad(image, height, width)
image = tf.clip_by_value(image, 0.0, 1.0)
if mode == tf.estimator.ModeKeys.TRAIN and distort:
image = _flip(image)
num_distort_cases = 4
# pylint: disable=unnecessary-lambda
image = _apply_with_random_selector(
image, lambda x, ordering: _distort_color(x, ordering),
num_cases=num_distort_cases)
if image_model_fn.startswith("resnet_v1"):
# resnet_v1 uses vgg preprocessing
image = image * 255.
image = _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
elif image_model_fn.startswith("resnet_v2"):
# resnet v2 uses inception preprocessing
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
示例11: testSubIntervalBounds
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def testSubIntervalBounds(self):
m = tf.subtract
z = tf.constant([[-2, 3, 0]], dtype=tf.float32)
m = ibp.PiecewiseMonotonicWrapper(m)
input_bounds = ibp.IntervalBounds(z - 1., z + 1.)
output_bounds = m.propagate_bounds(input_bounds, input_bounds)
with self.test_session() as sess:
l, u = sess.run([output_bounds.lower, output_bounds.upper])
self.assertAlmostEqual([[-2., -2., -2.]], l.tolist())
self.assertAlmostEqual([[2., 2., 2.]], u.tolist())
示例12: _tf_squared_euclidean
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def _tf_squared_euclidean(X, Y):
"""Squared Euclidean distance between the rows of `X` and `Y`.
"""
return tf.reduce_sum(tf.pow(tf.subtract(X, Y), 2), axis=1)
示例13: add_jpeg_decoding
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def add_jpeg_decoding(input_width, input_height, input_depth, input_mean,
input_std):
"""Adds operations that perform JPEG decoding and resizing to the graph..
Args:
input_width: Desired width of the image fed into the recognizer graph.
input_height: Desired width of the image fed into the recognizer graph.
input_depth: Desired channels of the image fed into the recognizer graph.
input_mean: Pixel value that should be zero in the image for the graph.
input_std: How much to divide the pixel values by before recognition.
Returns:
Tensors for the node to feed JPEG data into, and the output of the
preprocessing steps.
"""
jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
resize_shape = tf.stack([input_height, input_width])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
resized_image = tf.image.resize_bilinear(decoded_image_4d,
resize_shape_as_int)
offset_image = tf.subtract(resized_image, input_mean)
mul_image = tf.multiply(offset_image, 1.0 / input_std)
return jpeg_data, mul_image
示例14: preprocess_image
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def preprocess_image(image,
output_height,
output_width,
is_training,
use_grayscale=False):
"""Preprocesses the given image.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
is_training: `True` if we're preprocessing the image for training and
`False` otherwise.
use_grayscale: Whether to convert the image from RGB to grayscale.
Returns:
A preprocessed image.
"""
del is_training # Unused argument
image = tf.to_float(image)
if use_grayscale:
image = tf.image.rgb_to_grayscale(image)
image = tf.image.resize_image_with_crop_or_pad(
image, output_width, output_height)
image = tf.subtract(image, 128.0)
image = tf.div(image, 128.0)
return image
示例15: normalize_image
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import subtract [as 別名]
def normalize_image(image, original_minval, original_maxval, target_minval,
target_maxval):
"""Normalizes pixel values in the image.
Moves the pixel values from the current [original_minval, original_maxval]
range to a the [target_minval, target_maxval] range.
Args:
image: rank 3 float32 tensor containing 1
image -> [height, width, channels].
original_minval: current image minimum value.
original_maxval: current image maximum value.
target_minval: target image minimum value.
target_maxval: target image maximum value.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('NormalizeImage', values=[image]):
original_minval = float(original_minval)
original_maxval = float(original_maxval)
target_minval = float(target_minval)
target_maxval = float(target_maxval)
image = tf.cast(image, dtype=tf.float32)
image = tf.subtract(image, original_minval)
image = tf.multiply(image, (target_maxval - target_minval) /
(original_maxval - original_minval))
image = tf.add(image, target_minval)
return image