本文整理匯總了Python中tensorflow.compat.v1.string方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.string方法的具體用法?Python v1.string怎麽用?Python v1.string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.string方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: decode_jpeg
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def decode_jpeg(image_buffer, scope=None): # , dtype=tf.float32):
"""Decode a JPEG string into one 3-D float image Tensor.
Args:
image_buffer: scalar string Tensor.
scope: Optional scope for op_scope.
Returns:
3-D float Tensor with values ranging from [0, 1).
"""
# with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
# with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
with tf.name_scope(scope or 'decode_jpeg'):
# Decode the string as an RGB JPEG.
# Note that the resulting image contains an unknown height and width
# that is set dynamically by decode_jpeg. In other words, the height
# and width of image is unknown at compile-time.
image = tf.image.decode_jpeg(image_buffer, channels=3,
fancy_upscaling=False,
dct_method='INTEGER_FAST')
# image = tf.Print(image, [tf.shape(image)], 'Image shape: ')
return image
示例2: _extract_dict_from_config
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _extract_dict_from_config(config, prefix, keys):
"""Return a subset of key/value pairs from `config` as a dict.
Args:
config: A Config object.
prefix: A string to which `keys` are added to form keys in `config`.
keys: The potential keys in the resulting dict.
Returns:
A dict with `key`/`value` pairs where `prefix + key` has value
`value` in `config`.
"""
subset = {}
for key in keys:
config_key = prefix + key
subset[key] = config[config_key]
return subset
示例3: eval_autoregressive
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def eval_autoregressive(self, features=None, decode_length=50):
"""Autoregressive eval.
Quadratic time in decode_length.
Args:
features: an map of string to `Tensor`
decode_length: an integer. How many additional timesteps to decode.
Returns:
logits: `Tensor`
losses: a dictionary: {loss-name (string): floating point `Scalar`}.
Contains a single key "training".
"""
results = self._slow_greedy_infer(features, decode_length=decode_length)
return results["logits"], results["losses"]
示例4: _beam_decode
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _beam_decode(self,
features,
decode_length,
beam_size,
top_beams,
alpha,
use_tpu=False):
"""Beam search decoding.
Models should ideally implement a more efficient version of this function.
Args:
features: an map of string to `Tensor`
decode_length: an integer. How many additional timesteps to decode.
beam_size: number of beams.
top_beams: an integer. How many of the beams to return.
alpha: Float that controls the length penalty. larger the alpha, stronger
the preference for longer translations.
use_tpu: A bool, whether to do beam decode on TPU.
Returns:
samples: an integer `Tensor`. Top samples from the beam search
"""
return self._beam_decode_slow(features, decode_length, beam_size, top_beams,
alpha, use_tpu)
示例5: _greedy_infer
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _greedy_infer(self, features, decode_length, use_tpu=False):
"""A greedy inference method.
Models should ideally implement a more efficient version of this function.
Args:
features: an map of string to `Tensor`
decode_length: an integer. How many additional timesteps to decode.
use_tpu: A bool, whether to build the inference graph for TPU.
Returns:
A dict of decoding results {
"outputs": integer `Tensor` of decoded ids of shape
[batch_size, <= decode_length] if beam_size == 1 or
[batch_size, top_beams, <= decode_length]
"scores": None
"logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size].
"losses": a dictionary: {loss-name (string): floating point `Scalar`}
}
"""
if use_tpu:
return self._slow_greedy_infer_tpu(features, decode_length)
return self._slow_greedy_infer(features, decode_length)
示例6: summarize_features
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def summarize_features(features, num_shards=1):
"""Generate summaries for features."""
if not common_layers.should_generate_summaries():
return
with tf.name_scope("input_stats"):
for (k, v) in sorted(six.iteritems(features)):
if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and
(v.dtype != tf.string)):
tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
nonpadding = tf.to_float(tf.not_equal(v, 0))
nonpadding_tokens = tf.reduce_sum(nonpadding)
tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
tf.summary.scalar("%s_nonpadding_fraction" % k,
tf.reduce_mean(nonpadding))
示例7: _encode_gif
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _encode_gif(images, fps):
"""Encodes numpy images into gif string.
Args:
images: A 4-D `uint8` `np.array` (or a list of 3-D images) of shape
`[time, height, width, channels]` where `channels` is 1 or 3.
fps: frames per second of the animation
Returns:
The encoded gif string.
Raises:
IOError: If the ffmpeg command returns an error.
"""
writer = WholeVideoWriter(fps)
writer.write_multi(images)
return writer.finish()
示例8: create_border
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def create_border(video, color="blue", border_percent=2):
"""Creates a border around each frame to differentiate input and target.
Args:
video: 5-D NumPy array.
color: string, "blue", "red" or "green".
border_percent: Percentarge of the frame covered by the border.
Returns:
video: 5-D NumPy array.
"""
# Do not create border if the video is not in RGB format
if video.shape[-1] != 3:
return video
color_to_axis = {"blue": 2, "red": 0, "green": 1}
axis = color_to_axis[color]
_, _, height, width, _ = video.shape
border_height = np.ceil(border_percent * height / 100.0).astype(np.int)
border_width = np.ceil(border_percent * width / 100.0).astype(np.int)
video[:, :, :border_height, :, axis] = 255
video[:, :, -border_height:, :, axis] = 255
video[:, :, :, :border_width, axis] = 255
video[:, :, :, -border_width:, axis] = 255
return video
示例9: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that converts CMYK JPEG data to RGB JPEG data.
self._cmyk_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_jpeg(self._cmyk_data, channels=0)
self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
示例10: _is_cmyk
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _is_cmyk(filename):
"""Determine if file contains a CMYK JPEG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a JPEG encoded with CMYK color space.
"""
# File list from:
# https://github.com/cytsai/ilsvrc-cmyk-image-list
blacklist = ['n01739381_1309.JPEG', 'n02077923_14822.JPEG',
'n02447366_23489.JPEG', 'n02492035_15739.JPEG',
'n02747177_10752.JPEG', 'n03018349_4028.JPEG',
'n03062245_4620.JPEG', 'n03347037_9675.JPEG',
'n03467068_12171.JPEG', 'n03529860_11437.JPEG',
'n03544143_17228.JPEG', 'n03633091_5218.JPEG',
'n03710637_5125.JPEG', 'n03961711_5286.JPEG',
'n04033995_2932.JPEG', 'n04258138_17003.JPEG',
'n04264628_27969.JPEG', 'n04336792_7448.JPEG',
'n04371774_5854.JPEG', 'n04596742_4225.JPEG',
'n07583066_647.JPEG', 'n13037406_4650.JPEG']
return filename.split('/')[-1] in blacklist
示例11: _find_human_readable_labels
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _find_human_readable_labels(synsets, synset_to_human):
"""Build a list of human-readable labels.
Args:
synsets: list of strings; each string is a unique WordNet ID.
synset_to_human: dict of synset to human labels, e.g.,
'n02119022' --> 'red fox, Vulpes vulpes'
Returns:
List of human-readable strings corresponding to each synset.
"""
humans = []
for s in synsets:
assert s in synset_to_human, ('Failed to find: %s' % s)
humans.append(synset_to_human[s])
return humans
示例12: _find_image_bounding_boxes
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _find_image_bounding_boxes(filenames, image_to_bboxes):
"""Find the bounding boxes for a given image file.
Args:
filenames: list of strings; each string is a path to an image file.
image_to_bboxes: dictionary mapping image file names to a list of
bounding boxes. This list contains 0+ bounding boxes.
Returns:
List of bounding boxes for each image. Note that each entry in this
list might contain from 0+ entries corresponding to the number of bounding
box annotations for the image.
"""
num_image_bbox = 0
bboxes = []
for f in filenames:
basename = os.path.basename(f)
if basename in image_to_bboxes:
bboxes.append(image_to_bboxes[basename])
num_image_bbox += 1
else:
bboxes.append([])
print('Found %d images with bboxes out of %d images' % (
num_image_bbox, len(filenames)))
return bboxes
示例13: DecodeExample
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def DecodeExample(self, serialized_example, item_handler, image_format):
"""Decodes the given serialized example with the specified item handler.
Args:
serialized_example: a serialized TF example string.
item_handler: the item handler used to decode the image.
image_format: the image format being decoded.
Returns:
the decoded image found in the serialized Example.
"""
serialized_example = array_ops.reshape(serialized_example, shape=[])
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features={
'image/encoded':
parsing_ops.FixedLenFeature((), tf.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature((),
tf.string,
default_value=image_format),
},
items_to_handlers={'image': item_handler})
[tf_image] = decoder.decode(serialized_example, ['image'])
return tf_image
示例14: serving_input_receiver_fn
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def serving_input_receiver_fn():
"""Creates an input function for serving."""
seq_len = FLAGS.max_seq_length
serialized_example = tf.placeholder(
dtype=tf.string, shape=[None], name="serialized_example")
features = {
"input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
"input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64),
"segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
}
feature_map = tf.parse_example(serialized_example, features=features)
feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32)
feature_map["label_ids"] = tf.constant(0, dtype=tf.int32)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in feature_map.keys():
t = feature_map[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
feature_map[name] = t
return tf.estimator.export.ServingInputReceiver(
features=feature_map, receiver_tensors=serialized_example)
示例15: add_missing_cmd
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def add_missing_cmd(command_list):
"""Adds missing cmd tags to the given command list."""
# E.g.: given:
# ['a', '0', '0', '0', '0', '0', '0', '0',
# '0', '0', '0', '0', '0', '0', '0']
# Converts to:
# [['a', '0', '0', '0', '0', '0', '0', '0'],
# ['a', '0', '0', '0', '0', '0', '0', '0']]
# And returns a string that joins these elements with spaces.
cmd_tag = command_list[0]
args = command_list[1:]
final_cmds = []
for arg_batch in grouper(args, NUM_ARGS[cmd_tag]):
final_cmds.append([cmd_tag] + list(arg_batch))
if not final_cmds:
# command has no args (e.g.: 'z')
final_cmds = [[cmd_tag]]
return final_cmds