當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.string方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.string方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.string方法的具體用法?Python v1.string怎麽用?Python v1.string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.string方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: decode_jpeg

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3,
                                 fancy_upscaling=False,
                                 dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

    return image 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:25,代碼來源:preprocessing.py

示例2: _extract_dict_from_config

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _extract_dict_from_config(config, prefix, keys):
  """Return a subset of key/value pairs from `config` as a dict.

  Args:
    config: A Config object.
    prefix: A string to which `keys` are added to form keys in `config`.
    keys: The potential keys in the resulting dict.

  Returns:
    A dict with `key`/`value` pairs where `prefix + key` has value
    `value` in `config`.
  """
  subset = {}
  for key in keys:
    config_key = prefix + key
    subset[key] = config[config_key]
  return subset 
開發者ID:deepmind,項目名稱:lamb,代碼行數:19,代碼來源:utils.py

示例3: eval_autoregressive

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def eval_autoregressive(self, features=None, decode_length=50):
    """Autoregressive eval.

    Quadratic time in decode_length.

    Args:
      features: an map of string to `Tensor`
      decode_length: an integer.  How many additional timesteps to decode.

    Returns:
      logits: `Tensor`
      losses: a dictionary: {loss-name (string): floating point `Scalar`}.
          Contains a single key "training".
    """
    results = self._slow_greedy_infer(features, decode_length=decode_length)
    return results["logits"], results["losses"] 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:t2t_model.py

示例4: _beam_decode

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _beam_decode(self,
                   features,
                   decode_length,
                   beam_size,
                   top_beams,
                   alpha,
                   use_tpu=False):
    """Beam search decoding.

    Models should ideally implement a more efficient version of this function.

    Args:
      features: an map of string to `Tensor`
      decode_length: an integer.  How many additional timesteps to decode.
      beam_size: number of beams.
      top_beams: an integer. How many of the beams to return.
      alpha: Float that controls the length penalty. larger the alpha, stronger
        the preference for longer translations.
      use_tpu: A bool, whether to do beam decode on TPU.

    Returns:
       samples: an integer `Tensor`. Top samples from the beam search
    """
    return self._beam_decode_slow(features, decode_length, beam_size, top_beams,
                                  alpha, use_tpu) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:t2t_model.py

示例5: _greedy_infer

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _greedy_infer(self, features, decode_length, use_tpu=False):
    """A greedy inference method.

    Models should ideally implement a more efficient version of this function.

    Args:
      features: an map of string to `Tensor`
      decode_length: an integer.  How many additional timesteps to decode.
      use_tpu: A bool, whether to build the inference graph for TPU.

    Returns:
      A dict of decoding results {
          "outputs": integer `Tensor` of decoded ids of shape
              [batch_size, <= decode_length] if beam_size == 1 or
              [batch_size, top_beams, <= decode_length]
          "scores": None
          "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size].
          "losses": a dictionary: {loss-name (string): floating point `Scalar`}
      }
    """
    if use_tpu:
      return self._slow_greedy_infer_tpu(features, decode_length)
    return self._slow_greedy_infer(features, decode_length) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:25,代碼來源:t2t_model.py

示例6: summarize_features

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def summarize_features(features, num_shards=1):
  """Generate summaries for features."""
  if not common_layers.should_generate_summaries():
    return

  with tf.name_scope("input_stats"):
    for (k, v) in sorted(six.iteritems(features)):
      if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and
          (v.dtype != tf.string)):
        tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
        tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
        nonpadding = tf.to_float(tf.not_equal(v, 0))
        nonpadding_tokens = tf.reduce_sum(nonpadding)
        tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
        tf.summary.scalar("%s_nonpadding_fraction" % k,
                          tf.reduce_mean(nonpadding)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:t2t_model.py

示例7: _encode_gif

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _encode_gif(images, fps):
  """Encodes numpy images into gif string.

  Args:
    images: A 4-D `uint8` `np.array` (or a list of 3-D images) of shape
      `[time, height, width, channels]` where `channels` is 1 or 3.
    fps: frames per second of the animation

  Returns:
    The encoded gif string.

  Raises:
    IOError: If the ffmpeg command returns an error.
  """
  writer = WholeVideoWriter(fps)
  writer.write_multi(images)
  return writer.finish() 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:common_video.py

示例8: create_border

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def create_border(video, color="blue", border_percent=2):
  """Creates a border around each frame to differentiate input and target.

  Args:
    video: 5-D NumPy array.
    color: string, "blue", "red" or "green".
    border_percent: Percentarge of the frame covered by the border.
  Returns:
    video: 5-D NumPy array.
  """
  # Do not create border if the video is not in RGB format
  if video.shape[-1] != 3:
    return video
  color_to_axis = {"blue": 2, "red": 0, "green": 1}
  axis = color_to_axis[color]
  _, _, height, width, _ = video.shape
  border_height = np.ceil(border_percent * height / 100.0).astype(np.int)
  border_width = np.ceil(border_percent * width / 100.0).astype(np.int)
  video[:, :, :border_height, :, axis] = 255
  video[:, :, -border_height:, :, axis] = 255
  video[:, :, :, :border_width, axis] = 255
  video[:, :, :, -border_width:, axis] = 255
  return video 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:25,代碼來源:video_utils.py

示例9: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_png(self._png_data, channels=3)
    self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that converts CMYK JPEG data to RGB JPEG data.
    self._cmyk_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_jpeg(self._cmyk_data, channels=0)
    self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:19,代碼來源:build_imagenet_data.py

示例10: _is_cmyk

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _is_cmyk(filename):
  """Determine if file contains a CMYK JPEG format image.

  Args:
    filename: string, path of the image file.

  Returns:
    boolean indicating if the image is a JPEG encoded with CMYK color space.
  """
  # File list from:
  # https://github.com/cytsai/ilsvrc-cmyk-image-list
  blacklist = ['n01739381_1309.JPEG', 'n02077923_14822.JPEG',
               'n02447366_23489.JPEG', 'n02492035_15739.JPEG',
               'n02747177_10752.JPEG', 'n03018349_4028.JPEG',
               'n03062245_4620.JPEG', 'n03347037_9675.JPEG',
               'n03467068_12171.JPEG', 'n03529860_11437.JPEG',
               'n03544143_17228.JPEG', 'n03633091_5218.JPEG',
               'n03710637_5125.JPEG', 'n03961711_5286.JPEG',
               'n04033995_2932.JPEG', 'n04258138_17003.JPEG',
               'n04264628_27969.JPEG', 'n04336792_7448.JPEG',
               'n04371774_5854.JPEG', 'n04596742_4225.JPEG',
               'n07583066_647.JPEG', 'n13037406_4650.JPEG']
  return filename.split('/')[-1] in blacklist 
開發者ID:google-research,項目名稱:morph-net,代碼行數:25,代碼來源:build_imagenet_data.py

示例11: _find_human_readable_labels

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _find_human_readable_labels(synsets, synset_to_human):
  """Build a list of human-readable labels.

  Args:
    synsets: list of strings; each string is a unique WordNet ID.
    synset_to_human: dict of synset to human labels, e.g.,
      'n02119022' --> 'red fox, Vulpes vulpes'

  Returns:
    List of human-readable strings corresponding to each synset.
  """
  humans = []
  for s in synsets:
    assert s in synset_to_human, ('Failed to find: %s' % s)
    humans.append(synset_to_human[s])
  return humans 
開發者ID:google-research,項目名稱:morph-net,代碼行數:18,代碼來源:build_imagenet_data.py

示例12: _find_image_bounding_boxes

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def _find_image_bounding_boxes(filenames, image_to_bboxes):
  """Find the bounding boxes for a given image file.

  Args:
    filenames: list of strings; each string is a path to an image file.
    image_to_bboxes: dictionary mapping image file names to a list of
      bounding boxes. This list contains 0+ bounding boxes.
  Returns:
    List of bounding boxes for each image. Note that each entry in this
    list might contain from 0+ entries corresponding to the number of bounding
    box annotations for the image.
  """
  num_image_bbox = 0
  bboxes = []
  for f in filenames:
    basename = os.path.basename(f)
    if basename in image_to_bboxes:
      bboxes.append(image_to_bboxes[basename])
      num_image_bbox += 1
    else:
      bboxes.append([])
  print('Found %d images with bboxes out of %d images' % (
      num_image_bbox, len(filenames)))
  return bboxes 
開發者ID:google-research,項目名稱:morph-net,代碼行數:26,代碼來源:build_imagenet_data.py

示例13: DecodeExample

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def DecodeExample(self, serialized_example, item_handler, image_format):
    """Decodes the given serialized example with the specified item handler.

    Args:
      serialized_example: a serialized TF example string.
      item_handler: the item handler used to decode the image.
      image_format: the image format being decoded.

    Returns:
      the decoded image found in the serialized Example.
    """
    serialized_example = array_ops.reshape(serialized_example, shape=[])
    decoder = tfexample_decoder.TFExampleDecoder(
        keys_to_features={
            'image/encoded':
                parsing_ops.FixedLenFeature((), tf.string, default_value=''),
            'image/format':
                parsing_ops.FixedLenFeature((),
                                            tf.string,
                                            default_value=image_format),
        },
        items_to_handlers={'image': item_handler})
    [tf_image] = decoder.decode(serialized_example, ['image'])
    return tf_image 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:26,代碼來源:tfexample_decoder_test.py

示例14: serving_input_receiver_fn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def serving_input_receiver_fn():
  """Creates an input function for serving."""
  seq_len = FLAGS.max_seq_length
  serialized_example = tf.placeholder(
      dtype=tf.string, shape=[None], name="serialized_example")
  features = {
      "input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
  }
  feature_map = tf.parse_example(serialized_example, features=features)
  feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32)
  feature_map["label_ids"] = tf.constant(0, dtype=tf.int32)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in feature_map.keys():
    t = feature_map[name]
    if t.dtype == tf.int64:
      t = tf.to_int32(t)
    feature_map[name] = t

  return tf.estimator.export.ServingInputReceiver(
      features=feature_map, receiver_tensors=serialized_example) 
開發者ID:google-research,項目名稱:albert,代碼行數:26,代碼來源:run_classifier.py

示例15: add_missing_cmd

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import string [as 別名]
def add_missing_cmd(command_list):
  """Adds missing cmd tags to the given command list."""
  # E.g.: given:
  #   ['a', '0', '0', '0', '0', '0', '0', '0',
  #         '0', '0', '0', '0', '0', '0', '0']
  # Converts to:
  #   [['a', '0', '0', '0', '0', '0', '0', '0'],
  #    ['a', '0', '0', '0', '0', '0', '0', '0']]
  # And returns a string that joins these elements with spaces.
  cmd_tag = command_list[0]
  args = command_list[1:]

  final_cmds = []
  for arg_batch in grouper(args, NUM_ARGS[cmd_tag]):
    final_cmds.append([cmd_tag] + list(arg_batch))

  if not final_cmds:
    # command has no args (e.g.: 'z')
    final_cmds = [[cmd_tag]]

  return final_cmds 
開發者ID:magenta,項目名稱:magenta,代碼行數:23,代碼來源:svg_utils.py


注:本文中的tensorflow.compat.v1.string方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。