當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.set_random_seed方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.set_random_seed方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.set_random_seed方法的具體用法?Python v1.set_random_seed怎麽用?Python v1.set_random_seed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.set_random_seed方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_invertibility

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def test_invertibility(self, op, name, dropout=0.0):
    with tf.Graph().as_default():
      tf.set_random_seed(42)
      x = tf.random_uniform(shape=(16, 32, 32, 4))

      if op in [glow_ops.affine_coupling, glow_ops.additive_coupling]:
        with arg_scope([glow_ops.get_dropout], init=False):
          x_inv, _ = op(name, x, reverse=False, dropout=dropout)
          x_inv_inv, _ = op(name, x_inv, reverse=True, dropout=dropout)
      else:
        x_inv, _ = op(name, x, reverse=False)
        x_inv_inv, _ = op(name, x_inv, reverse=True)
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        diff = session.run(x - x_inv_inv)
        self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:glow_ops_test.py

示例2: testGreedyFastTPUVsNonTPU

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def testGreedyFastTPUVsNonTPU(self):
    tf.set_random_seed(1234)
    decode_length = DECODE_LENGTH

    model, features = self._create_greedy_infer_model()

    with tf.variable_scope(tf.get_variable_scope(), reuse=True):
      fast_result_non_tpu = model._greedy_infer(
          features, decode_length, use_tpu=False)["outputs"]

      fast_result_tpu = model._greedy_infer(
          features, decode_length, use_tpu=True)["outputs"]

    with self.test_session():
      fast_non_tpu_res = fast_result_non_tpu.eval()
      fast_tpu_res = fast_result_tpu.eval()

    self.assertEqual(fast_tpu_res.shape,
                     (BATCH_SIZE, INPUT_LENGTH + decode_length))
    self.assertAllClose(fast_tpu_res, fast_non_tpu_res) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:evolved_transformer_test.py

示例3: testFlopRegularizerDontConvertToVariable

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def testFlopRegularizerDontConvertToVariable(self):
    tf.reset_default_graph()
    tf.set_random_seed(1234)

    x = tf.constant(1.0, shape=[2, 6], name='x', dtype=tf.float32)
    w = tf.Variable(tf.truncated_normal([6, 4], stddev=1.0), use_resource=True)
    net = tf.matmul(x, w)

    # Create FLOPs network regularizer.
    threshold = 0.9
    flop_reg = flop_regularizer.GroupLassoFlopsRegularizer([net.op], threshold,
                                                           0)

    with self.cached_session():
      tf.global_variables_initializer().run()
      flop_reg.get_regularization_term().eval() 
開發者ID:google-research,項目名稱:morph-net,代碼行數:18,代碼來源:flop_regularizer_test.py

示例4: setUp

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def setUp(self):
    super(OpRegularizerManagerTest, self).setUp()
    tf.set_random_seed(12)
    np.random.seed(665544)
    IndexOpRegularizer.reset_index()

    # Create default OpHandler dict for testing.
    self._default_op_handler_dict = collections.defaultdict(
        grouping_op_handler.GroupingOpHandler)
    self._default_op_handler_dict.update({
        'FusedBatchNormV3':
            IndexBatchNormSourceOpHandler(),
        'Conv2D':
            output_non_passthrough_op_handler.OutputNonPassthroughOpHandler(),
        'ConcatV2':
            concat_op_handler.ConcatOpHandler(),
        'DepthwiseConv2dNative':
            depthwise_convolution_op_handler.DepthwiseConvolutionOpHandler(),
    }) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:21,代碼來源:op_regularizer_manager_test.py

示例5: get_data_and_params

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def get_data_and_params():
  """Set up input dataset and variables."""
  (train_x, train_y), _ = tf.keras.datasets.mnist.load_data()
  tf.set_random_seed(0)
  hparams = contrib_training.HParams(
      batch_size=200,
      learning_rate=0.1,
      train_steps=101,
  )
  dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
  dataset = dataset.repeat()
  dataset = dataset.shuffle(hparams.batch_size * 10)
  dataset = dataset.batch(hparams.batch_size)

  def reshape_ex(x, y):
    return (tf.to_float(tf.reshape(x, (-1, 28 * 28))) / 256.0,
            tf.one_hot(tf.squeeze(y), 10))

  dataset = dataset.map(reshape_ex)
  w = tf.get_variable('w0', (28 * 28, 10))
  b = tf.get_variable('b0', (10,), initializer=tf.zeros_initializer())
  opt = tf.train.GradientDescentOptimizer(hparams.learning_rate)
  return dataset, opt, hparams, w, b 
開發者ID:tensorflow,項目名稱:autograph,代碼行數:25,代碼來源:mnist_benchmark.py

示例6: test_generator_graph

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def test_generator_graph(self):
    tf.set_random_seed(1234)
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for i, batch_size in zip(xrange(3, 7), xrange(3, 8)):
      tf.reset_default_graph()
      final_size = 2 ** i
      noise = tf.random.normal([batch_size, 64])
      image, end_points = dcgan.generator(
          noise,
          depth=32,
          final_size=final_size)

      self.assertAllEqual([batch_size, final_size, final_size, 3],
                          image.shape.as_list())

      expected_names = ['deconv%i' % j for j in xrange(1, i)] + ['logits']
      self.assertSetEqual(set(expected_names), set(end_points.keys()))

      # Check layer depths.
      for j in range(1, i):
        layer = end_points['deconv%i' % j]
        self.assertEqual(32 * 2**(i-j-1), layer.get_shape().as_list()[-1]) 
開發者ID:tensorflow,項目名稱:models,代碼行數:25,代碼來源:dcgan_test.py

示例7: testCreateLogisticClassifier

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def testCreateLogisticClassifier(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = LogisticClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 2)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'LogisticClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(update_ops, []) 
開發者ID:tensorflow,項目名稱:models,代碼行數:27,代碼來源:model_deploy_test.py

示例8: testCreateSingleclone

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def testCreateSingleclone(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 5)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'BatchNormClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(len(update_ops), 2) 
開發者ID:tensorflow,項目名稱:models,代碼行數:27,代碼來源:model_deploy_test.py

示例9: testCreateOnecloneWithPS

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def testCreateOnecloneWithPS(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1,
                                                    num_ps_tasks=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      self.assertEqual(len(clones), 1)
      clone = clones[0]
      self.assertEqual(clone.outputs.op.name,
                       'BatchNormClassifier/fully_connected/Sigmoid')
      self.assertDeviceEqual(clone.device, '/job:worker/device:GPU:0')
      self.assertEqual(clone.scope, '')
      self.assertEqual(len(slim.get_variables()), 5)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, '/job:ps/task:0/CPU:0')
        self.assertDeviceEqual(v.device, v.value().device) 
開發者ID:tensorflow,項目名稱:models,代碼行數:26,代碼來源:model_deploy_test.py

示例10: _train_and_eval_local

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def _train_and_eval_local(self,
                            params,
                            check_output_values=False,
                            max_final_loss=10.,
                            skip=None,
                            use_test_preprocessor=True):
    # TODO(reedwm): check_output_values should default to True and be enabled
    # on every test. Currently, if check_output_values=True and the calls to
    # tf.set_random_seed(...) and np.seed(...) are passed certain seed values in
    # benchmark_cnn.py, then most tests will fail. This indicates the tests
    # are brittle and could fail with small changes when
    # check_output_values=True, so check_output_values defaults to False for
    # now.

    def run_fn(run_type, inner_params):
      del run_type
      if use_test_preprocessor:
        return [
            self._run_benchmark_cnn_with_black_and_white_images(inner_params)
        ]
      else:
        return [self._run_benchmark_cnn(inner_params)]

    return test_util.train_and_eval(self, run_fn, params,
                                    check_output_values=check_output_values,
                                    max_final_loss=max_final_loss,
                                    skip=skip) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:29,代碼來源:benchmark_cnn_test.py

示例11: setUpClass

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def setUpClass(cls):
    tf.set_random_seed(1)
    cls.problem = registry.problem("test_problem")
    cls.data_dir = tempfile.gettempdir()
    cls.filepatterns = generate_test_data(cls.problem, cls.data_dir) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:7,代碼來源:data_reader_test.py

示例12: set_random_seed

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def set_random_seed(seed):
  tf.set_random_seed(seed)
  random.seed(seed)
  np.random.seed(seed) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:6,代碼來源:trainer_lib.py

示例13: testSlowVsFast

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def testSlowVsFast(self):
    tf.set_random_seed(1234)
    model, features = get_model(transformer.transformer_tiny())

    decode_length = DECODE_LENGTH

    out_logits, _ = model(features)
    out_logits = tf.squeeze(out_logits, axis=[2, 3])
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
        labels=tf.reshape(features["targets"], [-1]))
    loss = tf.reduce_mean(loss)
    apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)

    with self.test_session():
      tf.global_variables_initializer().run()
      for _ in range(10):
        apply_grad.run()

    model.set_mode(tf.estimator.ModeKeys.PREDICT)

    with tf.variable_scope(tf.get_variable_scope(), reuse=True):
      greedy_result = model._slow_greedy_infer(features,
                                               decode_length)["outputs"]
      greedy_result = tf.squeeze(greedy_result, axis=[2, 3])

      fast_result = model._greedy_infer(features, decode_length)["outputs"]

    with self.test_session():
      greedy_res = greedy_result.eval()
      fast_res = fast_result.eval()

    self.assertEqual(fast_res.shape, (BATCH_SIZE, INPUT_LENGTH + decode_length))
    self.assertAllClose(greedy_res, fast_res) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:36,代碼來源:evolved_transformer_test.py

示例14: setUp

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def setUp(self):
    tf.set_random_seed(1234)
    np.random.seed(123) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:5,代碼來源:discretization_test.py

示例15: setUp

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import set_random_seed [as 別名]
def setUp(self):
    tf.reset_default_graph()
    tf.set_random_seed(7907)
    with contrib_framework.arg_scope(
        [layers.conv2d, layers.conv2d_transpose],
        weights_initializer=tf.random_normal_initializer):
      self.BuildModel()
    with self.cached_session():
      tf.global_variables_initializer().run() 
開發者ID:google-research,項目名稱:morph-net,代碼行數:11,代碼來源:group_lasso_regularizer_test.py


注:本文中的tensorflow.compat.v1.set_random_seed方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。