當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.rsqrt方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.rsqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.rsqrt方法的具體用法?Python v1.rsqrt怎麽用?Python v1.rsqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.rsqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: diet_expert

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def diet_expert(x, hidden_size, params):
  """A two-layer feed-forward network with relu activation on hidden layer.

  Uses diet variables.
  Recomputes hidden layer on backprop to save activation memory.

  Args:
    x: a Tensor with shape [batch, io_size]
    hidden_size: an integer
    params: a diet variable HParams object.

  Returns:
    a Tensor with shape [batch, io_size]
  """

  @fn_with_diet_vars(params)
  def diet_expert_internal(x):
    dim = x.get_shape().as_list()[-1]
    h = tf.layers.dense(x, hidden_size, activation=tf.nn.relu, use_bias=False)
    y = tf.layers.dense(h, dim, use_bias=False)
    y *= tf.rsqrt(tf.to_float(dim * hidden_size))
    return y

  return diet_expert_internal(x) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:diet.py

示例2: group_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def group_norm(x, filters=None, num_groups=8, epsilon=1e-5):
  """Group normalization as in https://arxiv.org/abs/1803.08494."""
  x_shape = shape_list(x)
  if filters is None:
    filters = x_shape[-1]
  assert len(x_shape) == 4
  assert filters % num_groups == 0
  # Prepare variables.
  scale = tf.get_variable(
      "group_norm_scale", [filters], initializer=tf.ones_initializer())
  bias = tf.get_variable(
      "group_norm_bias", [filters], initializer=tf.zeros_initializer())
  epsilon, scale, bias = [cast_like(t, x) for t in [epsilon, scale, bias]]
  # Reshape and compute group norm.
  x = tf.reshape(x, x_shape[:-1] + [num_groups, filters // num_groups])
  # Calculate mean and variance on heights, width, channels (not groups).
  mean, variance = tf.nn.moments(x, [1, 2, 4], keep_dims=True)
  norm_x = (x - mean) * tf.rsqrt(variance + epsilon)
  return tf.reshape(norm_x, x_shape) * scale + bias 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:common_layers.py

示例3: apply_batch_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def apply_batch_norm(self, wrapper, mean, variance, scale, bias, epsilon):
    # Element-wise multiplier.
    multiplier = tf.rsqrt(variance + epsilon)
    if scale is not None:
      multiplier *= scale
    w = multiplier
    # Element-wise bias.
    b = -multiplier * mean
    if bias is not None:
      b += bias
    b = tf.squeeze(b, axis=0)
    # Because the scale might be negative, we need to apply a strategy similar
    # to linear.
    c = (self.lower + self.upper) / 2.
    r = (self.upper - self.lower) / 2.
    c = tf.multiply(c, w) + b
    r = tf.multiply(r, tf.abs(w))
    return IntervalBounds(c - r, c + r) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:20,代碼來源:bounds.py

示例4: apply_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def apply_norm(x, epsilon=1e-6):
  """Applies layer normalization to x.

  Based on "Layer Normalization":
  https://arxiv.org/abs/1607.06450

  Args:
    x: <float>[..., input_size]
    epsilon: Used to avoid division by 0.

  Returns:
    <float>[..., input_size]
  """
  input_size = x.get_shape()[-1]
  with tf.variable_scope("layer_norm", values=[x]):
    scale = tf.get_variable(
        "layer_norm_scale", [input_size], initializer=tf.ones_initializer())
    bias = tf.get_variable(
        "layer_norm_bias", [input_size], initializer=tf.zeros_initializer())
    mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
    variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True)
    norm_x = (x - mean) * tf.rsqrt(variance + epsilon)
    result = norm_x * scale + bias
    return result 
開發者ID:google-research,項目名稱:language,代碼行數:26,代碼來源:common_layers.py

示例5: _learning_rate_default

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def _learning_rate_default(self, multiply_by_parameter_scale):
    learning_rate = tf.minimum(tf.rsqrt(step_num() + 1.0), 0.01)
    if not multiply_by_parameter_scale:
      learning_rate *= 0.05
    return learning_rate 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:7,代碼來源:adafactor.py

示例6: standardize_images

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def standardize_images(x):
  """Image standardization on batches and videos."""
  with tf.name_scope("standardize_images", values=[x]):
    x_shape = shape_list(x)
    x = to_float(tf.reshape(x, [-1] + x_shape[-3:]))
    x_mean = tf.reduce_mean(x, axis=[1, 2], keepdims=True)
    x_variance = tf.reduce_mean(
        tf.squared_difference(x, x_mean), axis=[1, 2], keepdims=True)
    num_pixels = to_float(x_shape[-2] * x_shape[-3])
    x = (x - x_mean) / tf.maximum(tf.sqrt(x_variance), tf.rsqrt(num_pixels))
    return tf.reshape(x, x_shape) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:13,代碼來源:common_layers.py

示例7: l2_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def l2_norm(x, filters=None, epsilon=1e-6, name=None, reuse=None):
  """Layer normalization with l2 norm."""
  if filters is None:
    filters = shape_list(x)[-1]
  with tf.variable_scope(name, default_name="l2_norm", values=[x], reuse=reuse):
    scale = tf.get_variable(
        "l2_norm_scale", [filters], initializer=tf.ones_initializer())
    bias = tf.get_variable(
        "l2_norm_bias", [filters], initializer=tf.zeros_initializer())
    epsilon, scale, bias = [cast_like(t, x) for t in [epsilon, scale, bias]]
    mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
    l2norm = tf.reduce_sum(
        tf.squared_difference(x, mean), axis=[-1], keepdims=True)
    norm_x = (x - mean) * tf.rsqrt(l2norm + epsilon)
    return norm_x * scale + bias 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:17,代碼來源:common_layers.py

示例8: ae_latent_softmax

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def ae_latent_softmax(latents_pred, latents_discrete_hot, vocab_size, hparams):
  """Latent prediction and loss.

  Args:
    latents_pred: Tensor of shape [..., depth].
    latents_discrete_hot: Tensor of shape [..., vocab_size].
    vocab_size: an int representing the vocab size.
    hparams: HParams.

  Returns:
    sample: Tensor of shape [...], a sample from a multinomial distribution.
    loss: Tensor of shape [...], the softmax cross-entropy.
  """
  with tf.variable_scope("latent_logits"):
    latents_logits = tf.layers.dense(latents_pred, vocab_size,
                                     name="logits_dense")
    if hparams.logit_normalization:
      latents_logits *= tf.rsqrt(1e-8 +
                                 tf.reduce_mean(tf.square(latents_logits)))
    loss = tf.nn.softmax_cross_entropy_with_logits_v2(
        labels=latents_discrete_hot, logits=latents_logits)

    # TODO(trandustin): tease this out from ae_latent_softmax.
    # we use just the loss portion to anchor prior / encoder on text.
    sample = multinomial_sample(latents_logits,
                                vocab_size,
                                hparams.sampling_method,
                                hparams.sampling_temp)
    return sample, loss 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:31,代碼來源:latent_layers.py

示例9: preprocess_example

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def preprocess_example(self, example, mode, hparams):
    p = hparams
    if p.audio_preproc_in_bottom:
      example["inputs"] = tf.expand_dims(
          tf.expand_dims(example["waveforms"], -1), -1)
    else:
      waveforms = tf.expand_dims(example["waveforms"], 0)
      mel_fbanks = common_audio.compute_mel_filterbank_features(
          waveforms,
          sample_rate=p.audio_sample_rate,
          dither=p.audio_dither,
          preemphasis=p.audio_preemphasis,
          frame_length=p.audio_frame_length,
          frame_step=p.audio_frame_step,
          lower_edge_hertz=p.audio_lower_edge_hertz,
          upper_edge_hertz=p.audio_upper_edge_hertz,
          num_mel_bins=p.audio_num_mel_bins,
          apply_mask=False)
      if p.audio_add_delta_deltas:
        mel_fbanks = common_audio.add_delta_deltas(mel_fbanks)
      fbank_size = common_layers.shape_list(mel_fbanks)
      assert fbank_size[0] == 1

      # This replaces CMVN estimation on data
      var_epsilon = 1e-09
      mean = tf.reduce_mean(mel_fbanks, keepdims=True, axis=1)
      variance = tf.reduce_mean(tf.squared_difference(mel_fbanks, mean),
                                keepdims=True, axis=1)
      mel_fbanks = (mel_fbanks - mean) * tf.rsqrt(variance + var_epsilon)

      # Later models like to flatten the two spatial dims. Instead, we add a
      # unit spatial dim and flatten the frequencies and channels.
      example["inputs"] = tf.concat([
          tf.reshape(mel_fbanks, [fbank_size[1], fbank_size[2], fbank_size[3]]),
          tf.zeros((p.num_zeropad_frames, fbank_size[2], fbank_size[3]))], 0)

    if not p.audio_keep_example_waveforms:
      del example["waveforms"]
    return super(SpeechRecognitionProblem, self
                ).preprocess_example(example, mode, hparams) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:42,代碼來源:speech_recognition.py

示例10: layer_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def layer_norm(input_tensor, name=None, epsilon=1e-5):
    """Run layer normalization on the last dimension of the tensor."""
    name2use = f'LayerNorm_{name}' if name is not None else name
    with tf.variable_scope(name2use, default_name='LayerNorm'):
        dim = input_tensor.shape[-1].value
        gamma = tf.get_variable('gamma', [dim], initializer=tf.constant_initializer(1))
        beta = tf.get_variable('beta', [dim], initializer=tf.constant_initializer(0))
        mean = tf.reduce_mean(input_tensor, axis=-1, keepdims=True)
        std = tf.reduce_mean(tf.square(input_tensor - mean), axis=-1, keepdims=True)
        input_tensor = (input_tensor - mean) * tf.rsqrt(std + epsilon)
        input_tensor = input_tensor * gamma + beta
    return input_tensor 
開發者ID:imcaspar,項目名稱:gpt2-ml,代碼行數:14,代碼來源:utils.py

示例11: layer_norm_all

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def layer_norm_all(h,
                   batch_size,
                   base,
                   num_units,
                   scope='layer_norm',
                   reuse=False,
                   gamma_start=1.0,
                   epsilon=1e-3,
                   use_bias=True):
  """Layer Norm (faster version, but not using defun)."""
  # Performs layer norm on multiple base at once (ie, i, g, j, o for lstm)
  # Reshapes h in to perform layer norm in parallel
  h_reshape = tf.reshape(h, [batch_size, base, num_units])
  mean = tf.reduce_mean(h_reshape, [2], keep_dims=True)
  var = tf.reduce_mean(tf.square(h_reshape - mean), [2], keep_dims=True)
  epsilon = tf.constant(epsilon)
  rstd = tf.rsqrt(var + epsilon)
  h_reshape = (h_reshape - mean) * rstd
  # reshape back to original
  h = tf.reshape(h_reshape, [batch_size, base * num_units])
  with tf.variable_scope(scope):
    if reuse:
      tf.get_variable_scope().reuse_variables()
    gamma = tf.get_variable(
        'ln_gamma', [4 * num_units],
        initializer=tf.constant_initializer(gamma_start))
    if use_bias:
      beta = tf.get_variable(
          'ln_beta', [4 * num_units], initializer=tf.constant_initializer(0.0))
  if use_bias:
    return gamma * h + beta
  return gamma * h 
開發者ID:magenta,項目名稱:magenta,代碼行數:34,代碼來源:rnn.py

示例12: layer_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def layer_norm(x,
               num_units,
               scope='layer_norm',
               reuse=False,
               gamma_start=1.0,
               epsilon=1e-3,
               use_bias=True):
  """Calculate layer norm."""
  axes = [1]
  mean = tf.reduce_mean(x, axes, keep_dims=True)
  x_shifted = x - mean
  var = tf.reduce_mean(tf.square(x_shifted), axes, keep_dims=True)
  inv_std = tf.rsqrt(var + epsilon)
  with tf.variable_scope(scope):
    if reuse:
      tf.get_variable_scope().reuse_variables()
    gamma = tf.get_variable(
        'ln_gamma', [num_units],
        initializer=tf.constant_initializer(gamma_start))
    if use_bias:
      beta = tf.get_variable(
          'ln_beta', [num_units], initializer=tf.constant_initializer(0.0))
  output = gamma * (x_shifted) * inv_std
  if use_bias:
    output += beta
  return output 
開發者ID:magenta,項目名稱:magenta,代碼行數:28,代碼來源:rnn.py

示例13: pixel_norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def pixel_norm(images, epsilon=1.0e-8):
  """Pixel normalization.

  For each pixel a[i,j,k] of image in HWC format, normalize its value to
  b[i,j,k] = a[i,j,k] / SQRT(SUM_k(a[i,j,k]^2) / C + eps).

  Args:
    images: A 4D `Tensor` of NHWC format.
    epsilon: A small positive number to avoid division by zero.

  Returns:
    A 4D `Tensor` with pixel-wise normalized channels.
  """
  return images * tf.rsqrt(
      tf.reduce_mean(tf.square(images), axis=3, keepdims=True) + epsilon) 
開發者ID:magenta,項目名稱:magenta,代碼行數:17,代碼來源:layers.py

示例14: norm

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def norm(x, scope, *, axis=-1, epsilon=1e-5):
    """Normalize to mean = 0, std = 1, then do a diagonal affine transform."""
    with tf.variable_scope(scope):
        n_state = x.shape[-1]
        g = tf.get_variable(
            'g', [n_state], initializer=tf.constant_initializer(1))
        b = tf.get_variable(
            'b', [n_state], initializer=tf.constant_initializer(0))
        u = tf.reduce_mean(x, axis=axis, keepdims=True)
        s = tf.reduce_mean(tf.square(x-u), axis=axis, keepdims=True)
        x = (x - u) * tf.rsqrt(s + epsilon)
        x = x*g + b
        return x 
開發者ID:re-search,項目名稱:gpt2-estimator,代碼行數:15,代碼來源:model.py

示例15: test_forward_rsqrt

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import rsqrt [as 別名]
def test_forward_rsqrt():
    """test Rsqrt """
    np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32)
    tf.reset_default_graph()
    with tf.Graph().as_default():
        in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
        tf.rsqrt(in_data, name="rsqrt")
        compare_tf_with_tvm([np_data], ['in_data:0'], 'rsqrt:0') 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:10,代碼來源:test_forward.py


注:本文中的tensorflow.compat.v1.rsqrt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。