當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.round方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.round方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.round方法的具體用法?Python v1.round怎麽用?Python v1.round使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.round方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: pixels_from_softmax

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def pixels_from_softmax(frame_logits, pure_sampling=False,
                        temperature=1.0, gumbel_noise_factor=0.2):
  """Given frame_logits from a per-pixel softmax, generate colors."""
  # If we're purely sampling, just sample each pixel.
  if pure_sampling or temperature == 0.0:
    return common_layers.sample_with_temperature(frame_logits, temperature)

  # Gumbel-sample from the pixel sofmax and average by pixel values.
  pixel_range = tf.to_float(tf.range(256))
  for _ in range(len(frame_logits.get_shape().as_list()) - 1):
    pixel_range = tf.expand_dims(pixel_range, axis=0)

  frame_logits = tf.nn.log_softmax(frame_logits)
  gumbel_samples = discretization.gumbel_sample(
      common_layers.shape_list(frame_logits)) * gumbel_noise_factor

  frame = tf.nn.softmax((frame_logits + gumbel_samples) / temperature, axis=-1)
  result = tf.reduce_sum(frame * pixel_range, axis=-1)
  # Round on the forward pass, not on the backward one.
  return result + tf.stop_gradient(tf.round(result) - result) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:base.py

示例2: model_eval_fn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def model_eval_fn(self,
                    features,
                    labels,
                    inference_outputs,
                    train_loss,
                    train_outputs,
                    mode,
                    config = None,
                    params = None):
    """See base class."""
    eval_mse = tf.metrics.mean_squared_error(
        labels=labels.classes,
        predictions=inference_outputs['a_predicted'],
        name='eval_mse')

    predictions_rounded = tf.round(inference_outputs['a_predicted'])

    eval_precision = tf.metrics.precision(
        labels=labels.classes,
        predictions=predictions_rounded,
        name='eval_precision')

    eval_accuracy = tf.metrics.accuracy(
        labels=labels.classes,
        predictions=predictions_rounded,
        name='eval_accuracy')

    eval_recall = tf.metrics.recall(
        labels=labels.classes,
        predictions=predictions_rounded,
        name='eval_recall')

    metric_fn = {
        'eval_mse': eval_mse,
        'eval_precision': eval_precision,
        'eval_accuracy': eval_accuracy,
        'eval_recall': eval_recall
    }

    return metric_fn 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:42,代碼來源:classification_model.py

示例3: regular_noise_mask

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def regular_noise_mask(length,
                       noise_density,
                       min_span_length=1,
                       max_span_length=5):
  """Noise mask consisting of equally spaced spans of equal length.

  The span length and the offset are chosen randomly per-example.
  The beginning and end of the sequence may be part of shorter spans of noise.
  For example, if noise_density=0.25 and a span length of 2 is chosen,
  then the output might be:

  [T F F F F F F T T F F F F F F T T F F F F F F T T F F]

  Args:
    length: an int32 scalar
    noise_density: a float - approximate density of output mask
    min_span_length: an integer
    max_span_length: an integer

  Returns:
    a boolean tensor with shape [length]
  """
  span_length = tf.random.uniform([],
                                  minval=min_span_length,
                                  maxval=max_span_length + 1,
                                  dtype=tf.int32)
  period = tf.cast(
      tf.round(tf.cast(span_length, tf.float32) / noise_density), tf.int32)
  offset = tf.random.uniform([], maxval=period, dtype=tf.int32)
  return (tf.range(length, dtype=tf.int32) + offset) % period < span_length 
開發者ID:google-research,項目名稱:text-to-text-transfer-transformer,代碼行數:32,代碼來源:preprocessors.py

示例4: quantize_image

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def quantize_image(image):
  image = tf.round(image * 255)
  image = tf.saturate_cast(image, tf.uint8)
  return image 
開發者ID:tensorflow,項目名稱:compression,代碼行數:6,代碼來源:bls2017.py

示例5: write_png

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def write_png(filename, image):
  """Creates graph to write a PNG image file."""
  image = tf.squeeze(image, 0)
  if image.dtype.is_floating:
    image = tf.round(image)
  if image.dtype != tf.uint8:
    image = tf.saturate_cast(image, tf.uint8)
  string = tf.image.encode_png(image)
  return tf.io.write_file(filename, string) 
開發者ID:tensorflow,項目名稱:compression,代碼行數:11,代碼來源:tfci.py

示例6: denorm_boxes_graph

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def denorm_boxes_graph(boxes, shape):
    """Converts boxes from normalized coordinates to pixel coordinates.
    boxes: [..., (y1, x1, y2, x2)] in normalized coordinates
    shape: [..., (height, width)] in pixels

    Note: In pixel coordinates (y2, x2) is outside the box. But in normalized
    coordinates it's inside the box.

    Returns:
        [..., (y1, x1, y2, x2)] in pixel coordinates
    """
    h, w = tf.split(tf.cast(shape, tf.float32), 2)
    scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0)
    shift = tf.constant([0., 0., 1., 1.])
    return tf.cast(tf.round(tf.multiply(boxes, scale) + shift), tf.int32) 
開發者ID:OCR-D,項目名稱:ocrd_anybaseocr,代碼行數:17,代碼來源:model.py

示例7: test_forward_round

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def test_forward_round():
    """test Round"""
    np_data = np.random.uniform(-10, 10, size=(5, 7)).astype(np.float32)
    tf.reset_default_graph()
    with tf.Graph().as_default():
        in_data = tf.placeholder(tf.float32, (5, 7), name="in_data")
        tf.round(in_data, name="round")
        compare_tf_with_tvm([np_data], ['in_data:0'], 'round:0') 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:10,代碼來源:test_forward.py

示例8: sample_from_discretized_mix_logistic

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def sample_from_discretized_mix_logistic(pred, seed=None):
  """Sampling from a discretized mixture of logistics.

  Args:
    pred: A [batch, height, width, num_mixtures*10] tensor of floats
      comprising one unconstrained mixture probability, three means
      (one per channel), three standard deviations (one per channel),
      and three coefficients which linearly parameterize dependence across
      channels.
    seed: Random seed.

  Returns:
    A tensor of shape [batch, height, width, 3] with real intensities scaled
    between -1 and 1.
  """

  logits, locs, log_scales, coeffs = split_to_discretized_mix_logistic_params(
      pred)

  # Sample mixture indicator given logits using the gumbel max trick.
  num_mixtures = shape_list(logits)[-1]
  gumbel_noise = -tf.log(-tf.log(
      tf.random_uniform(
          tf.shape(logits), minval=1e-5, maxval=1. - 1e-5, seed=seed)))
  sel = tf.one_hot(
      tf.argmax(logits + gumbel_noise, -1),
      depth=num_mixtures,
      dtype=tf.float32)

  # Select mixture component's parameters.
  sel = tf.expand_dims(sel, -1)
  locs = tf.reduce_sum(locs * sel, 3)
  log_scales = tf.reduce_sum(log_scales * sel, 3)
  coeffs = tf.reduce_sum(coeffs * sel, 3)

  # Sample from 3-D logistic & clip to interval. Note we don't round to the
  # nearest 8-bit value when sampling.
  uniform_noise = tf.random_uniform(
      tf.shape(locs), minval=1e-5, maxval=1. - 1e-5, seed=seed)
  logistic_noise = tf.log(uniform_noise) - tf.log1p(-uniform_noise)
  x = locs + tf.exp(log_scales) * logistic_noise
  x0 = x[..., 0]
  x1 = x[..., 1] + coeffs[..., 0] * x0
  x2 = x[..., 2] + coeffs[..., 1] * x0 + coeffs[..., 2] * x1
  x = tf.stack([x0, x1, x2], axis=-1)
  x = tf.clip_by_value(x, -1., 1.)
  return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:49,代碼來源:common_layers.py

示例9: targeted_dropout

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def targeted_dropout(inputs,
                     k,
                     keep_prob,
                     targeting_fn,
                     is_training,
                     do_prune=False):
  """Applies targeted dropout.

  Applies dropout at a rate of `1 - keep_prob` to only those elements of
  `inputs` marked by `targeting_fn`. See below and paper for more detail:

  "Targeted Dropout for Posthoc Pruning" Aidan N. Gomez, Ivan Zhang,
    Kevin Swersky, Yarin Gal, and Geoffrey E. Hinton.

  Args:
    inputs: Tensor, inputs to apply targeted dropout to.
    k: Scalar Tensor or python scalar, sets the number of elements to target in
      `inputs`. Must be within `[0, tf.shape(x)[-1]]` and compatible with
      second argument of `targeting_fn`.
    keep_prob: Scalar Tensor, passed as `tf.nn.dropout`'s `keep_prob` argument.
    targeting_fn: callable `fn(inputs, k) -> Boolean Tensor`, produces a
      boolean mask the same shape as `inputs` where True indicates an element
      will be dropped, and False not.
    is_training: bool, indicates whether currently training.
    do_prune: bool, indicates whether to prune the `k * (1 - keep_prob)`
      elements of `inputs` expected to be dropped each forwards pass.

  Returns:
    Tensor, same shape and dtype as `inputs`.
  """
  if not is_training and do_prune:
    k = tf.round(to_float(k) * to_float(1. - keep_prob))

  mask = targeting_fn(inputs, k)
  mask = tf.cast(mask, inputs.dtype)

  if is_training:
    return inputs * (1 - mask) + tf.nn.dropout(inputs, keep_prob) * mask
  elif do_prune:
    return inputs * (1 - mask)
  else:
    return inputs 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:44,代碼來源:common_layers.py

示例10: stsb

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def stsb(dataset):
  """Convert STSB examples to text2text format.

  STSB maps two sentences to a floating point number between 1 and 5
  representing their semantic similarity. Since we are treating all tasks as
  text-to-text tasks we need to convert this floating point number to a string.
  The vast majority of the similarity score labels in STSB are in the set
  [0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest
  entry in this set, and then we convert the result to a string (literally e.g.
  "3.4"). This converts STSB roughly into a 26-class classification dataset.
  This function uses the feature names from the dataset to unpack examples into
  a format amenable for a text2text problem.

  For example, a typical example from STSB might look like
  {
      "sentence1": "Three more US soldiers killed in Afghanistan",
      "sentence2": "NATO Soldier Killed in Afghanistan",
      "label": 1.8,
  }

  This example would be transformed to
  {
       "inputs": (
           "stsb sentence1: Three more US soldiers killed in Afghanistan "
           "sentence2: NATO Soldier Killed in Afghanistan"
       ),
       "targets": "1.8",
  }

  Args:
    dataset: a tf.data.Dataset to process.
  Returns:
    a tf.data.Dataset
  """
  def my_fn(x):
    """Collapse an example into a text2text pair."""
    strs_to_join = [
        'stsb sentence1:', x['sentence1'], 'sentence2:', x['sentence2']
    ]
    label_string = tf.as_string(tf.round(x['label']*5)/5, precision=1)
    joined = tf.strings.join(strs_to_join, separator=' ')
    return {'inputs': joined, 'targets': label_string, 'idx': x['idx']}
  return dataset.map(my_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) 
開發者ID:google-research,項目名稱:text-to-text-transfer-transformer,代碼行數:45,代碼來源:preprocessors.py

示例11: random_spans_helper

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import round [as 別名]
def random_spans_helper(inputs_length=gin.REQUIRED,
                        noise_density=gin.REQUIRED,
                        mean_noise_span_length=gin.REQUIRED,
                        extra_tokens_per_span_inputs=gin.REQUIRED,
                        extra_tokens_per_span_targets=gin.REQUIRED):
  """Training parameters to avoid padding with random_spans_noise_mask.

  When training a model with random_spans_noise_mask, we would like to set the
  other training hyperparmeters in a way that avoids padding.  This function
  helps us compute these hyperparameters.

  We assume that each noise span in the input is replaced by
  extra_tokens_per_span_inputs sentinel tokens, and each non-noise span in the
  targets is replaced by extra_tokens_per_span_targets sentinel tokens.

  This function tells us the required number of tokens in the raw example (for
  split_tokens()) as well as the length of the encoded targets.

  Args:
    inputs_length: an integer - desired length of the tokenized inputs sequence
    noise_density: a float
    mean_noise_span_length: a float
    extra_tokens_per_span_inputs: an integer
    extra_tokens_per_span_targets: an integer
  Returns:
    tokens_length: length of original text in tokens
    targets_length: an integer - length in tokens of encoded targets sequence
  """
  def _tokens_length_to_inputs_length_targets_length(tokens_length):
    num_noise_tokens = int(round(tokens_length * noise_density))
    num_nonnoise_tokens = tokens_length - num_noise_tokens
    num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
    # inputs contain all nonnoise tokens, sentinels for all noise spans
    # and one EOS token.
    return (
        num_nonnoise_tokens +
        num_noise_spans * extra_tokens_per_span_inputs + 1,
        num_noise_tokens +
        num_noise_spans * extra_tokens_per_span_targets + 1)

  tokens_length = inputs_length
  while (_tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0]
         <= inputs_length):
    tokens_length += 1
  inputs_length, targets_length = (
      _tokens_length_to_inputs_length_targets_length(tokens_length))
  # minor hack to get the targets length to be equal to inputs length
  # which is more likely to have been set to a nice round number.
  if noise_density == 0.5 and targets_length > inputs_length:
    tokens_length -= 1
    targets_length -= 1
  tf.logging.info(
      'tokens_length=%s inputs_length=%s targets_length=%s '
      'noise_density=%s mean_noise_span_length=%s ' %
      (tokens_length, inputs_length, targets_length,
       noise_density, mean_noise_span_length))
  return tokens_length, targets_length 
開發者ID:google-research,項目名稱:text-to-text-transfer-transformer,代碼行數:59,代碼來源:preprocessors.py


注:本文中的tensorflow.compat.v1.round方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。