當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.reverse方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.reverse方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.reverse方法的具體用法?Python v1.reverse怎麽用?Python v1.reverse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.reverse方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: calculate_generalized_advantage_estimator

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def calculate_generalized_advantage_estimator(
    reward, value, done, gae_gamma, gae_lambda):
  # pylint: disable=g-doc-args
  """Generalized advantage estimator.

  Returns:
    GAE estimator. It will be one element shorter than the input; this is
    because to compute GAE for [0, ..., N-1] one needs V for [1, ..., N].
  """
  # pylint: enable=g-doc-args

  next_value = value[1:, :]
  next_not_done = 1 - tf.cast(done[1:, :], tf.float32)
  delta = (reward[:-1, :] + gae_gamma * next_value * next_not_done
           - value[:-1, :])

  return_ = tf.reverse(tf.scan(
      lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
      [tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
      tf.zeros_like(delta[0, :]),
      parallel_iterations=1), [0])
  return tf.check_numerics(return_, "return") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:ppo.py

示例2: _reverse_seq

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def _reverse_seq(sequence, sequence_lengths=None):
  """Reverse sequence along dim 0.

  Args:
    sequence: Tensor of shape [T, B, ...].
    sequence_lengths: (optional) tensor of shape [B]. If `None`, only reverse
      along dim 0.

  Returns:
    Tensor of same shape as sequence with dim 0 reversed up to sequence_lengths.
  """
  if sequence_lengths is None:
    return tf.reverse(sequence, [0])

  sequence_lengths = tf.convert_to_tensor(sequence_lengths)
  with tf.control_dependencies(
      [tf.assert_equal(sequence.shape[1], sequence_lengths.shape[0])]):
    return tf.reverse_sequence(
        sequence, sequence_lengths, seq_axis=0, batch_axis=1) 
開發者ID:deepmind,項目名稱:trfl,代碼行數:21,代碼來源:sequence_ops.py

示例3: _test_forward_tranapose_axes_input

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def _test_forward_tranapose_axes_input(ishape, axes):
    data = np.random.uniform(size=ishape).astype(np.float32)
    axes_np = np.array(axes).astype(np.int32)

    with tf.Graph().as_default():
        in1 = tf.placeholder(
            shape=data.shape, dtype=data.dtype, name="transpose_data")

        const1 = tf.constant(axes_np, dtype=tf.int32)

        # make axes an input to tf.transpose, but not an input to the graph,
        # so it can be extracted with infer_value_simulated
        axes = tf.reverse(const1, axis=[-1])
        tf.transpose(in1, axes)

        compare_tf_with_tvm([data], ['transpose_data:0'], 'transpose:0') 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:18,代碼來源:test_forward.py

示例4: discounted_rewards

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def discounted_rewards(reward, done, gae_gamma, end_values):
  """Discounted rewards."""
  not_done = tf.expand_dims(1 - tf.cast(done, tf.float32), axis=2)
  end_values = end_values * not_done[-1, :, :]
  return_ = tf.scan(
      lambda agg, cur: cur + gae_gamma * agg,
      tf.expand_dims(reward, axis=2) * not_done,
      initializer=end_values,
      reverse=True,
      back_prop=False,
      parallel_iterations=2)
  return tf.check_numerics(return_, "return") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:14,代碼來源:ppo.py

示例5: get_read_mask

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def get_read_mask(self, read_head_index):
    """Uses mask_pos_lt() instead of mask_pos_gt() to reverse read values.

    Args:
      read_head_index: Identifies which read head we're getting the mask for.

    Returns:
      A tf.float32 tensor of shape [1, 1, memory_size, memory_size].
    """
    if read_head_index == 0:
      return tf.expand_dims(
          common_layers.mask_pos_gt(self._memory_size, self._memory_size),
          axis=0)
    else:
      raise ValueError("Read head index must be 0 for queue.") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:17,代碼來源:neural_stack.py

示例6: body

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def body(self, features):
    """Build the main body of the model.

    Args:
      features: A dict of "inputs" and "targets" which have already been passed
        through an embedding layer. Inputs should have shape
        [batch_size, max_seq_length, 1, embedding_size]. Targets should have
        shape [batch_size, max_seq_length, 1, 1]

    Returns:
      The logits which get passed to the top of the model for inference.
      A tensor of shape [batch_size, seq_length, 1, embedding_size]
    """
    inputs = features.get("inputs")
    targets = features["targets"]

    if inputs is not None:
      inputs = common_layers.flatten4d3d(inputs)
      _, final_encoder_state = self._rnn(tf.reverse(inputs, axis=[1]),
                                         "encoder")
    else:
      final_encoder_state = None

    shifted_targets = common_layers.shift_right(targets)
    decoder_outputs, _ = self._rnn(
        common_layers.flatten4d3d(shifted_targets),
        "decoder",
        initial_state=final_encoder_state)
    return decoder_outputs 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:31,代碼來源:neural_stack.py

示例7: pixel_wise_softmax

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def pixel_wise_softmax(output, name='pixel_wise_softmax'):
    """Return the softmax outputs of images, every pixels have multiple label, the sum of a pixel is 1.
    Usually be used for image segmentation.

    Parameters
    ------------
    output : tensor
        - For 2d image, 4D tensor [batch_size, height, weight, channel], channel >= 2.
        - For 3d image, 5D tensor [batch_size, depth, height, weight, channel], channel >= 2.

    Examples
    ---------
    >>> outputs = pixel_wise_softmax(network.outputs)
    >>> dice_loss = 1 - dice_coe(outputs, y_, epsilon=1e-5)

    References
    -----------
    - `tf.reverse <https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#reverse>`_
    """
    with tf.name_scope(name) as scope:
        return tf.nn.softmax(output)
        ## old implementation
        # exp_map = tf.exp(output)
        # if output.get_shape().ndims == 4:   # 2d image
        #     evidence = tf.add(exp_map, tf.reverse(exp_map, [False, False, False, True]))
        # elif output.get_shape().ndims == 5: # 3d image
        #     evidence = tf.add(exp_map, tf.reverse(exp_map, [False, False, False, False, True]))
        # else:
        #     raise Exception("output parameters should be 2d or 3d image, not %s" % str(output._shape))
        # return tf.div(exp_map, evidence) 
開發者ID:ravisvi,項目名稱:super-resolution-videos,代碼行數:32,代碼來源:activation.py

示例8: _test_space_to_batch_nd_infer_paddings

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def _test_space_to_batch_nd_infer_paddings(input_shape, block_shape, dtype='int32'):
    data = np.random.uniform(0, 5, size=input_shape).astype(dtype)
    padding_np = np.array([0, 1]).astype(np.int32).reshape((1, 2))
    with tf.Graph().as_default():
        in_data = tf.placeholder(shape=input_shape, dtype=dtype)
        const1 = tf.constant(padding_np, dtype=tf.int32)
        # make paddings an input to tf.transpose, but not an input to the graph,
        # so it can be extracted with infer_value_simulated
        paddings = tf.reverse(const1, axis=[-1])
        out = tf.space_to_batch_nd(in_data, block_shape, paddings)
        compare_tf_with_tvm(data, in_data.name, out.name) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:13,代碼來源:test_forward.py

示例9: _test_forward_reverse_v2

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reverse [as 別名]
def _test_forward_reverse_v2(in_shape, axis, dtype):
    np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    with tf.Graph().as_default():
        in_data = tf.placeholder(dtype, in_shape, name="in_data")
        tf.reverse(in_data, axis=[axis], name="reverse")
        compare_tf_with_tvm([np_data], ['in_data:0'], 'reverse:0') 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:9,代碼來源:test_forward.py


注:本文中的tensorflow.compat.v1.reverse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。