本文整理匯總了Python中tensorflow.compat.v1.reset_default_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.reset_default_graph方法的具體用法?Python v1.reset_default_graph怎麽用?Python v1.reset_default_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.reset_default_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testFlopRegularizerDontConvertToVariable
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testFlopRegularizerDontConvertToVariable(self):
tf.reset_default_graph()
tf.set_random_seed(1234)
x = tf.constant(1.0, shape=[2, 6], name='x', dtype=tf.float32)
w = tf.Variable(tf.truncated_normal([6, 4], stddev=1.0), use_resource=True)
net = tf.matmul(x, w)
# Create FLOPs network regularizer.
threshold = 0.9
flop_reg = flop_regularizer.GroupLassoFlopsRegularizer([net.op], threshold,
0)
with self.cached_session():
tf.global_variables_initializer().run()
flop_reg.get_regularization_term().eval()
示例2: testCreateDropoutWithPlaceholder
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testCreateDropoutWithPlaceholder(self):
height, width = 3, 3
tf.reset_default_graph()
with self.cached_session():
is_training = array_ops.placeholder(dtype=dtypes.bool, shape=[])
images = random_ops.random_uniform((5, height, width, 3), seed=1)
# this verifies that that we've inserted cond properly.
output = _layers.dropout(images, is_training=is_training)
# In control_flow_v2 the op is called "If" and it is behind
# identity op. In legacy mode cond we just go by name.
# Might need to do something more robust here eventually.
is_cond_op = (output.op.inputs[0].op.type == 'If' or
output.op.name == 'Dropout/cond/Merge')
self.assertTrue(is_cond_op,
'Expected cond_op got ' + repr(output))
output.get_shape().assert_is_compatible_with(images.get_shape())
示例3: init_data_normalizer
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def init_data_normalizer(config):
"""Initializes data normalizer."""
normalizer = data_normalizer.registry[config['data_normalizer']](config)
if normalizer.exists():
return
if config['task'] == 0:
tf.reset_default_graph()
data_helper = data_helpers.registry[config['data_type']](config)
real_images, _ = data_helper.provide_data(batch_size=10)
# Save normalizer.
# Note if normalizer has been saved, save() is no-op. To regenerate the
# normalizer, delete the normalizer file in train_root_dir/assets
normalizer.save(real_images)
else:
while not normalizer.exists():
time.sleep(5)
示例4: run
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def run(config):
"""Entry point to run training."""
init_data_normalizer(config)
stage_ids = train_util.get_stage_ids(**config)
if not config['train_progressive']:
stage_ids = list(stage_ids)[-1:]
# Train one stage at a time
for stage_id in stage_ids:
batch_size = train_util.get_batch_size(stage_id, **config)
tf.reset_default_graph()
with tf.device(tf.train.replica_device_setter(config['ps_tasks'])):
model = lib_model.Model(stage_id, batch_size, config)
model.add_summaries()
print('Variables:')
for v in tf.global_variables():
print('\t', v.name, v.get_shape().as_list())
logging.info('Calling train.train')
train_util.train(model, **config)
示例5: load_entities
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def load_entities(self, base_dir):
"""Load entity ids and masks."""
tf.reset_default_graph()
id_ckpt = os.path.join(base_dir, "entity_ids")
entity_ids = search_utils.load_database(
"entity_ids", None, id_ckpt, dtype=tf.int32)
mask_ckpt = os.path.join(base_dir, "entity_mask")
entity_mask = search_utils.load_database(
"entity_mask", None, mask_ckpt)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
tf.logging.info("Loading entity ids and masks...")
np_ent_ids, np_ent_mask = sess.run([entity_ids, entity_mask])
tf.logging.info("Building entity count matrix...")
entity_count_matrix = search_utils.build_count_matrix(np_ent_ids,
np_ent_mask)
tf.logging.info("Computing IDFs...")
self.idfs = search_utils.counts_to_idfs(entity_count_matrix, cutoff=1e-5)
tf.logging.info("Computing entity Tf-IDFs...")
ent_tfidfs = search_utils.counts_to_tfidf(entity_count_matrix, self.idfs)
self.ent_tfidfs = normalize(ent_tfidfs, norm="l2", axis=0)
示例6: parse
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def parse(self, onnx_file, output_nodes=None, model_name=None):
tf.disable_eager_execution()
if model_name:
graph_name = model_name
else:
graph_name, _ = os.path.splitext(
os.path.basename(onnx_file)
)
tf.reset_default_graph()
model = onnx.load(onnx_file)
onnx_graph = model.graph
ugraph = uTensorGraph(
name=graph_name,
output_nodes=[],
lib_name='onnx',
ops_info={},
)
self._build_graph(onnx_graph, ugraph)
ugraph = Legalizer.legalize(ugraph)
tf.reset_default_graph()
return ugraph
示例7: test_generator_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def test_generator_graph(self):
tf.set_random_seed(1234)
# Check graph construction for a number of image size/depths and batch
# sizes.
for i, batch_size in zip(xrange(3, 7), xrange(3, 8)):
tf.reset_default_graph()
final_size = 2 ** i
noise = tf.random.normal([batch_size, 64])
image, end_points = dcgan.generator(
noise,
depth=32,
final_size=final_size)
self.assertAllEqual([batch_size, final_size, final_size, 3],
image.shape.as_list())
expected_names = ['deconv%i' % j for j in xrange(1, i)] + ['logits']
self.assertSetEqual(set(expected_names), set(end_points.keys()))
# Check layer depths.
for j in range(1, i):
layer = end_points['deconv%i' % j]
self.assertEqual(32 * 2**(i-j-1), layer.get_shape().as_list()[-1])
示例8: test_discriminator_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def test_discriminator_graph(self):
# Check graph construction for a number of image size/depths and batch
# sizes.
for i, batch_size in zip(xrange(1, 6), xrange(3, 8)):
tf.reset_default_graph()
img_w = 2 ** i
image = tf.random.uniform([batch_size, img_w, img_w, 3], -1, 1)
output, end_points = dcgan.discriminator(
image,
depth=32)
self.assertAllEqual([batch_size, 1], output.get_shape().as_list())
expected_names = ['conv%i' % j for j in xrange(1, i+1)] + ['logits']
self.assertSetEqual(set(expected_names), set(end_points.keys()))
# Check layer depths.
for j in range(1, i+1):
layer = end_points['conv%i' % j]
self.assertEqual(32 * 2**(j-1), layer.get_shape().as_list()[-1])
示例9: testGlobalPoolUnknownImageShape
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testGlobalPoolUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 1
height, width = 250, 300
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(
tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes,
global_pool=True)
self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Conv2d_13_pointwise']
feed_dict = {inputs: input_np}
tf.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
示例10: testUnknownImageShape
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 2
height, width = 224, 224
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(
tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
tf.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
示例11: testGlobalPoolUnknownImageShape
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testGlobalPoolUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 1
height, width = 250, 300
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(
tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v2(inputs, num_classes,
global_pool=True)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
tf.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
示例12: testUnknownImageShape
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 2
height, width = 299, 299
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(
tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v3(inputs, num_classes)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_7c']
feed_dict = {inputs: input_np}
tf.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
示例13: testGlobalPoolUnknownImageShape
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testGlobalPoolUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 1
height, width = 330, 400
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(
tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v3(inputs, num_classes,
global_pool=True)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_7c']
feed_dict = {inputs: input_np}
tf.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 11, 2048])
示例14: testGlobalPoolUnknownImageShape
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def testGlobalPoolUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 1
height, width = 250, 300
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(
tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v1(inputs, num_classes,
global_pool=True)
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
tf.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
示例15: _get_output_names
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reset_default_graph [as 別名]
def _get_output_names(self):
"""Return the concatenated output names"""
try:
import tensorflow.compat.v1 as tf
except ImportError:
raise ImportError(
"InputConfiguration: Unable to import tensorflow which is "
"required to restore from saved model.")
tags = self._get_tag_set()
output_names = set()
with tf.Session() as sess:
meta_graph_def = tf.saved_model.loader.load(sess,
tags,
self._model_dir)
for sig_def in meta_graph_def.signature_def.values():
for output_tensor in sig_def.outputs.values():
output_names.add(output_tensor.name.replace(":0", ""))
tf.reset_default_graph()
return ",".join(output_names)