本文整理匯總了Python中tensorflow.compat.v1.reduce_min方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.reduce_min方法的具體用法?Python v1.reduce_min怎麽用?Python v1.reduce_min使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.reduce_min方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: top_k_softmax
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def top_k_softmax(x, k):
"""Calculate softmax(x), select top-k and rescale to sum to 1.
Args:
x: Input to softmax over.
k: Number of top-k to select.
Returns:
softmax(x) and maximum item.
"""
x = tf.nn.softmax(x)
top_x, _ = tf.nn.top_k(x, k=k + 1)
min_top = tf.reduce_min(top_x, axis=-1, keep_dims=True)
x = tf.nn.relu((x - min_top) + 1e-12)
x /= tf.reduce_sum(x, axis=-1, keep_dims=True)
return x, tf.reduce_max(top_x, axis=-1)
示例2: apply_piecewise_monotonic_fn
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def apply_piecewise_monotonic_fn(self, wrapper, fn, boundaries, *args):
valid_values = []
for a in [self] + list(args):
vs = []
vs.append(a.lower)
vs.append(a.upper)
for b in boundaries:
vs.append(
tf.maximum(a.lower, tf.minimum(a.upper, b * tf.ones_like(a.lower))))
valid_values.append(vs)
outputs = []
for inputs in itertools.product(*valid_values):
outputs.append(fn(*inputs))
outputs = tf.stack(outputs, axis=-1)
return IntervalBounds(tf.reduce_min(outputs, axis=-1),
tf.reduce_max(outputs, axis=-1))
示例3: _simplex_bounds
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def _simplex_bounds(mapped_vertices, mapped_centres, r, axis):
"""Calculates naive bounds on the given layer-mapped vertices.
Args:
mapped_vertices: Tensor of shape (num_vertices, *output_shape)
or of shape (batch_size, num_vertices, *output_shape)
containing the vertices in the layer's output space.
mapped_centres: Tensor of shape (batch_size, *output_shape)
containing the layer's nominal outputs.
r: Scalar in [0, 1) specifying the radius (in vocab space) of the simplex.
axis: Index of the `num_vertices` dimension of `mapped_vertices`.
Returns:
lb_out: Tensor of shape (batch_size, *output_shape) with lower bounds
on the outputs of the affine layer.
ub_out: Tensor of shape (batch_size, *output_shape) with upper bounds
on the outputs of the affine layer.
"""
# Use the negative of r, instead of the complement of r, as
# we're shifting the input domain to be centred at the origin.
lb_out = -r * mapped_centres + r * tf.reduce_min(mapped_vertices, axis=axis)
ub_out = -r * mapped_centres + r * tf.reduce_max(mapped_vertices, axis=axis)
return lb_out, ub_out
示例4: assert_box_normalized
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def assert_box_normalized(boxes, maximum_normalized_coordinate=1.1):
"""Asserts the input box tensor is normalized.
Args:
boxes: a tensor of shape [N, 4] where N is the number of boxes.
maximum_normalized_coordinate: Maximum coordinate value to be considered
as normalized, default to 1.1.
Returns:
a tf.Assert op which fails when the input box tensor is not normalized.
Raises:
ValueError: When the input box tensor is not normalized.
"""
box_minimum = tf.reduce_min(boxes)
box_maximum = tf.reduce_max(boxes)
return tf.Assert(
tf.logical_and(
tf.less_equal(box_maximum, maximum_normalized_coordinate),
tf.greater_equal(box_minimum, 0)),
[boxes])
示例5: _curvature_range
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def _curvature_range(self):
"""Curvature range.
Returns:
h_max_t, h_min_t ops
"""
self._curv_win = tf.get_variable("curv_win",
dtype=tf.float32,
trainable=False,
shape=[self.curvature_window_width,],
initializer=tf.zeros_initializer)
# We use log smoothing for curvature range
self._curv_win = tf.scatter_update(self._curv_win,
self._step % self.curvature_window_width,
tf.log(self._grad_norm_squared))
# Note here the iterations start from iteration 0
valid_window = tf.slice(self._curv_win,
tf.constant([0,]),
tf.expand_dims(
tf.minimum(
tf.constant(self.curvature_window_width),
self._step + 1), dim=0))
self._h_min_t = tf.reduce_min(valid_window)
self._h_max_t = tf.reduce_max(valid_window)
curv_range_ops = []
with tf.control_dependencies([self._h_min_t, self._h_max_t]):
avg_op = self._moving_averager.apply([self._h_min_t, self._h_max_t])
with tf.control_dependencies([avg_op]):
self._h_min = tf.exp(
tf.identity(self._moving_averager.average(self._h_min_t)))
self._h_max = tf.exp(
tf.identity(self._moving_averager.average(self._h_max_t)))
if self._sparsity_debias:
self._h_min *= self._sparsity_avg
self._h_max *= self._sparsity_avg
curv_range_ops.append(avg_op)
return curv_range_ops # h_max_t, h_min_t
示例6: top_k_softmax
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def top_k_softmax(x, k):
"""Calculate softmax(x), select top-k and rescale to sum to 1."""
x = tf.nn.softmax(x)
top_x, _ = tf.nn.top_k(x, k=k+1)
min_top = tf.reduce_min(top_x, axis=-1, keepdims=True)
x = tf.nn.relu((x - min_top) + 1e-12)
x /= tf.reduce_sum(x, axis=-1, keepdims=True)
return x, tf.reduce_max(top_x, axis=-1)
示例7: clip_logits
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def clip_logits(logits, config):
logits_clip = getattr(config, "logits_clip", 0.)
if logits_clip > 0:
min_logit = tf.reduce_min(logits)
return tf.minimum(logits - min_logit, logits_clip)
else:
return logits
示例8: _compute_bbx_loss
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def _compute_bbx_loss(self, trans, pts, gt):
"""Compute bounding box loss."""
oo = 1e5
inside = tf.expand_dims(tf.cast(gt > 0.5, tf.float32), axis=1)
trans = tf.expand_dims(trans, axis=2)
pts = tf.expand_dims(pts, axis=1)
distances = tf.reduce_sum(tf.square(trans - pts), axis=-1, keepdims=True)
distances = inside * distances + (1 - inside) * oo
min_dis = tf.reduce_min(distances, axis=2)
return tf.reduce_mean(min_dis)
示例9: debugprint
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def debugprint(x, name=''):
"""Small wrapper for tf.Print which prints summary statistics."""
name += '\t' + x.name
return tf.Print(x,
[tf.reduce_min(x), tf.reduce_mean(x), tf.reduce_max(x)],
name)
示例10: _topk_greater
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def _topk_greater(bounds, k=5):
# Bounds has shape [batch_size, num_specs].
b = tf.nn.top_k(bounds, k=k, sorted=False).values
return tf.reduce_min(b, axis=-1) > 0.
示例11: variable_summaries
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def variable_summaries(var, scope=""):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope(scope):
with tf.name_scope("summaries"):
mean = tf.reduce_mean(var)
tf.summary.scalar("mean", mean)
with tf.name_scope("stddev"):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar("stddev", stddev)
tf.summary.scalar("max", tf.reduce_max(var))
tf.summary.scalar("min", tf.reduce_min(var))
tf.summary.histogram("histogram", var)
示例12: linear_interpolation
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def linear_interpolation(t, minimum, maximum):
t_min = tf.reduce_min(t)
t_max = tf.reduce_max(t)
return minimum + (t - t_min) * (maximum - minimum) / (t_max - t_min)
示例13: select_slate_greedy
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def select_slate_greedy(slate_size, s_no_click, s, q):
"""Selects the slate using the adaptive greedy algorithm.
This algorithm corresponds to the method "GS" in
Ie et al. https://arxiv.org/abs/1905.12767.
Args:
slate_size: int, the size of the recommendation slate.
s_no_click: float tensor, the score for not clicking any document.
s: [num_of_documents] tensor, the scores for clicking documents.
q: [num_of_documents] tensor, the predicted q values for documents.
Returns:
[slate_size] tensor, the selected slate.
"""
def argmax(v, mask):
return tf.argmax(
input=(v - tf.reduce_min(input_tensor=v) + 1) * mask, axis=0)
numerator = tf.constant(0.)
denominator = tf.constant(0.) + s_no_click
mask = tf.ones(tf.shape(input=q)[0])
def set_element(v, i, x):
mask = tf.one_hot(i, tf.shape(input=v)[0])
v_new = tf.ones_like(v) * x
return tf.where(tf.equal(mask, 1), v_new, v)
for _ in range(slate_size):
k = argmax((numerator + s * q) / (denominator + s), mask)
mask = set_element(mask, k, 0)
numerator = numerator + tf.gather(s * q, k)
denominator = denominator + tf.gather(s, k)
output_slate = tf.where(tf.equal(mask, 0))
return output_slate
示例14: variable_summaries
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
示例15: get_minimal_coverage_box
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import reduce_min [as 別名]
def get_minimal_coverage_box(boxlist,
default_box=None,
scope=None):
"""Creates a single bounding box which covers all boxes in the boxlist.
Args:
boxlist: A Boxlist.
default_box: A [1, 4] float32 tensor. If no boxes are present in `boxlist`,
this default box will be returned. If None, will use a default box of
[[0., 0., 1., 1.]].
scope: Name scope.
Returns:
A [1, 4] float32 tensor with a bounding box that tightly covers all the
boxes in the box list. If the boxlist does not contain any boxes, the
default box is returned.
"""
with tf.name_scope(scope, 'CreateCoverageBox'):
num_boxes = boxlist.num_boxes()
def coverage_box(bboxes):
y_min, x_min, y_max, x_max = tf.split(
value=bboxes, num_or_size_splits=4, axis=1)
y_min_coverage = tf.reduce_min(y_min, axis=0)
x_min_coverage = tf.reduce_min(x_min, axis=0)
y_max_coverage = tf.reduce_max(y_max, axis=0)
x_max_coverage = tf.reduce_max(x_max, axis=0)
return tf.stack(
[y_min_coverage, x_min_coverage, y_max_coverage, x_max_coverage],
axis=1)
default_box = default_box or tf.constant([[0., 0., 1., 1.]])
return tf.cond(
tf.greater_equal(num_boxes, 1),
true_fn=lambda: coverage_box(boxlist.get()),
false_fn=lambda: default_box)