當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.print方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.print方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.print方法的具體用法?Python v1.print怎麽用?Python v1.print使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.print方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testLoss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def testLoss(self):
    batch_size = 2
    key_depth = 5
    val_depth = 5
    memory_size = 4
    window_size = 3
    x_depth = 5
    memory = transformer_memory.TransformerMemory(
        batch_size, key_depth, val_depth, memory_size)
    x = tf.random_uniform([batch_size, window_size, x_depth], minval=.0)
    memory_results, _, _, _ = (
        memory.pre_attention(
            tf.random_uniform([batch_size], minval=0, maxval=1, dtype=tf.int32),
            x, None, None))
    x = memory.post_attention(memory_results, x)
    with tf.control_dependencies([tf.print("x", x)]):
      is_nan = tf.reduce_any(tf.math.is_nan(x))
    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      for _ in range(100):
        is_nan_value, _ = session.run([is_nan, x])
    self.assertEqual(is_nan_value, False) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:transformer_memory_test.py

示例2: Print

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def Print(self, x, data, message, **kwargs):  # pylint: disable=invalid-name
    """call tf.Print.

    Args:
      x: a LaidOutTensor
      data: a list of LaidOutTensor
      message: a string
      **kwargs: keyword arguments to tf.print
    Returns:
      a LaidOutTensor
    """
    tf.logging.info("PlacementMeshImpl::Print")
    x = x.to_laid_out_tensor()
    new_slices = x.tensor_list[:]
    with tf.device(self._devices[0]):
      new_slices[0] = tf.Print(
          new_slices[0], [t for d in data for t in d.tensor_list],
          message, **kwargs)
    return self.LaidOutTensor(new_slices) 
開發者ID:tensorflow,項目名稱:mesh,代碼行數:21,代碼來源:placement_mesh_impl.py

示例3: log

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def log(self, key, value=None, stack_offset=2):
    if key in self.tag_set:
      self._log_fn(key, value, stack_offset)
    else:
      print('Ignoring MLPerf logging item key=%s, value=%s for model %s' %
            (key, value, self.model)) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:8,代碼來源:mlperf.py

示例4: log_deferred_tensor_value

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def log_deferred_tensor_value(self, key, tensor_value, global_step,
                                stack_offset=2, every_n=1):
    """Logs the value of a tensor when the graph is run."""
    caller = '(%s)' % mlperf_log.get_caller(stack_offset, self._root_dir)
    def create_print_op():
      return tf.print(_MLPERF_LOG_PREFIX, self.mlperf_model_name,
                      tf.timestamp(), caller, key,
                      ': { "deferred": true, "value":', tensor_value, '}',
                      output_stream=sys.stdout)
    maybe_print = tf.cond(tf.equal(global_step % every_n, 0), create_print_op,
                          tf.no_op)
    with tf.control_dependencies([maybe_print]):
      return tf.identity(tensor_value) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:15,代碼來源:mlperf.py

示例5: log_train_epochs

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def log_train_epochs(self, num_epochs):
    """Logs all the TRAIN_EPOCHs log lines."""
    num_epochs_int = int(num_epochs)
    for i in range(num_epochs_int):
      # MLPerf allows us to print all the train epochs at once instead of
      # printing them as we do them.
      self.log(key=mlperf_log.TRAIN_EPOCH, value=i, stack_offset=3)
    if num_epochs_int != num_epochs:
      value = (str(num_epochs_int) +
               ', but this epoch only has {}% of the examples of a normal epoch'
               .format(100 * (num_epochs - num_epochs_int)))
      self.log(key=mlperf_log.TRAIN_EPOCH, value=value, stack_offset=3) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:14,代碼來源:mlperf.py

示例6: mlperf_logger

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def mlperf_logger(use_mlperf_logger, model):
  """Optionally enable the mlperf logger.

  If `use_mlperf_logger` is True, sets the `logger` global variable to an
  instance of MlPerfLogger that will print logs for MLPerf compliance. If
  `use_mlperf_logger` is False, does nothing.

  Args:
    use_mlperf_logger: If True, enables the mlperf logger. If False, this
      function does nothing.
    model: The model that will be logged. Required, because different models
      must log different things for MLPerf compliance.

  Yields:
    Nothing.

  Raises:
    ImportError: If `use_mlperf_logger` is True but the MLPerf compliance
      library cannot be imported
  """
  global logger
  if use_mlperf_logger:
    if not import_successful:
      raise ImportError('Failed to import MLPerf compliance library, which is '
                        'required when --ml_perf_compliance_logging is '
                        'specified. Clone this repo and add this directory '
                        'https://github.com/mlperf/training/tree/master/'
                        'compliance to the PYTHONPATH environmental variable.')
    logger_ = MlPerfLogger(model)
    old_logger = logger
    try:
      logger = logger_
      yield
    finally:
      logger = old_logger
  else:
    yield 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:39,代碼來源:mlperf.py

示例7: lone_print

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def lone_print(x):
  print(x)
  return x + 1 
開發者ID:tensorflow,項目名稱:autograph,代碼行數:5,代碼來源:call_to_print_function_test.py

示例8: print_multiple_values

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def print_multiple_values(x):
  print('x is', x)
  return x + 1 
開發者ID:tensorflow,項目名稱:autograph,代碼行數:5,代碼來源:call_to_print_function_test.py

示例9: multiple_prints

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def multiple_prints(x, y):
  print('x is', x)
  print('y is', y)
  return x + 1 
開發者ID:tensorflow,項目名稱:autograph,代碼行數:6,代碼來源:call_to_print_function_test.py

示例10: print_with_nontf_values

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def print_with_nontf_values(x):
  print('x is', x, {'foo': 'bar'})
  return x + 1 
開發者ID:tensorflow,項目名稱:autograph,代碼行數:5,代碼來源:call_to_print_function_test.py

示例11: print_in_cond

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def print_in_cond(x):
  if x == 0:
    print(x)
  return x 
開發者ID:tensorflow,項目名稱:autograph,代碼行數:6,代碼來源:call_to_print_function_test.py

示例12: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import print [as 別名]
def __init__(self,
               num_finetune_steps,
               finetune_lr,
               debug_log=False,
               finetune_all_layers=False,
               finetune_with_adam=False,
               **kwargs):
    """Initializes a baseline learner.

    Args:
      num_finetune_steps: number of finetune steps.
      finetune_lr: the learning rate used for finetuning.
      debug_log: If True, print out debug logs.
      finetune_all_layers: Whether to finetune all embedding variables. If
        False, only trains a linear classifier on top of the embedding.
      finetune_with_adam: Whether to use Adam for the within-episode finetuning.
        If False, gradient descent is used instead.
      **kwargs: Keyword arguments common to all `BaselineLearner`s (including
        `knn_in_fc` and `knn_distance`, which are not used by
        `BaselineFinetuneLearner` but are used by the parent class).
    """
    self.num_finetune_steps = num_finetune_steps
    self.finetune_lr = finetune_lr
    self.debug_log = debug_log
    self.finetune_all_layers = finetune_all_layers
    self.finetune_with_adam = finetune_with_adam
    if finetune_with_adam:
      self.finetune_opt = tf.train.AdamOptimizer(self.finetune_lr)
    super(BaselineFinetuneLearner, self).__init__(**kwargs) 
開發者ID:google-research,項目名稱:meta-dataset,代碼行數:31,代碼來源:learner.py


注:本文中的tensorflow.compat.v1.print方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。