當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.placeholder_with_default方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.placeholder_with_default方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.placeholder_with_default方法的具體用法?Python v1.placeholder_with_default怎麽用?Python v1.placeholder_with_default使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.placeholder_with_default方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testLSTMSeq2SeqAttention

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def testLSTMSeq2SeqAttention(self):
    vocab_size = 9
    x = np.random.randint(1, high=vocab_size, size=(3, 5, 1, 1))
    y = np.random.randint(1, high=vocab_size, size=(3, 6, 1, 1))
    hparams = lstm.lstm_attention()

    p_hparams = problem_hparams.test_problem_hparams(vocab_size,
                                                     vocab_size,
                                                     hparams)
    x = tf.constant(x, dtype=tf.int32)
    x = tf.placeholder_with_default(x, shape=[None, None, 1, 1])

    with self.test_session() as session:
      features = {
          "inputs": x,
          "targets": tf.constant(y, dtype=tf.int32),
      }
      model = lstm.LSTMSeq2seqAttention(
          hparams, tf.estimator.ModeKeys.TRAIN, p_hparams)
      logits, _ = model(features)
      session.run(tf.global_variables_initializer())
      res = session.run(logits)
    self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:25,代碼來源:lstm_test.py

示例2: get_placeholders

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def get_placeholders(self):
    hparams = self.hparams
    return dict(
        pianorolls=tf.placeholder(
            tf.bool,
            [None, None, hparams.num_pitches, hparams.num_instruments],
            "pianorolls"),
        # The default value is only used for checking if completion masker
        # should be evoked.  It can't be used directly as the batch size
        # and length of pianorolls are unknown during static time.
        outer_masks=tf.placeholder_with_default(
            np.zeros(
                (1, 1, hparams.num_pitches, hparams.num_instruments),
                dtype=np.float32),
            [None, None, hparams.num_pitches, hparams.num_instruments],
            "outer_masks"),
        sample_steps=tf.placeholder_with_default(0, (), "sample_steps"),
        total_gibbs_steps=tf.placeholder_with_default(
            0, (), "total_gibbs_steps"),
        current_step=tf.placeholder_with_default(0, (), "current_step"),
        temperature=tf.placeholder_with_default(0.99, (), "temperature")) 
開發者ID:magenta,項目名稱:magenta,代碼行數:23,代碼來源:lib_tfsampling.py

示例3: testStatesAfterLoop

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def testStatesAfterLoop(self):
    batch_size = 1
    beam_size = 1
    vocab_size = 2
    decode_length = 3

    initial_ids = tf.constant([0] * batch_size)  # GO
    probabilities = tf.constant([[[0.7, 0.3]], [[0.4, 0.6]], [[0.5, 0.5]]])

    def symbols_to_logits(ids, _, states):
      pos = tf.shape(ids)[1] - 1
      logits = tf.to_float(tf.log(probabilities[pos, :]))
      states["state"] += 1
      return logits, states

    states = {
        "state": tf.zeros((batch_size, 1)),
    }
    states["state"] = tf.placeholder_with_default(
        states["state"], shape=(None, 1))

    _, _, final_states = beam_search.beam_search(
        symbols_to_logits,
        initial_ids,
        beam_size,
        decode_length,
        vocab_size,
        0.0,
        eos_id=1,
        states=states)

    with self.test_session() as sess:
      final_states = sess.run(final_states)
    self.assertAllEqual([[[2]]], final_states["state"]) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:36,代碼來源:beam_search_test.py

示例4: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def __init__(self, capacity, shape, dtype=tf.int32, name=None):
    """Initializes the TensorBuffer.

    Args:
      capacity: Initial capacity. Buffer will double in capacity each time it is
        filled to capacity.
      shape: The shape (as tuple or list) of the tensors to accumulate.
      dtype: The type of the tensors.
      name: A string name for the variable_scope used.

    Raises:
      ValueError: If the shape is empty (specifies scalar shape).
    """
    shape = list(shape)
    self._rank = len(shape)
    self._name = name
    self._dtype = dtype
    if not self._rank:
      raise ValueError('Shape cannot be scalar.')
    shape = [capacity] + shape

    with tf.variable_scope(self._name):
      # We need to use a placeholder as the initial value to allow resizing.
      self._buffer = tf.Variable(
          initial_value=tf.placeholder_with_default(
              tf.zeros(shape, dtype), shape=None),
          trainable=False,
          name='buffer',
          use_resource=True)
      self._current_size = tf.Variable(
          initial_value=0, dtype=tf.int32, trainable=False, name='current_size')
      self._capacity = tf.Variable(
          initial_value=capacity,
          dtype=tf.int32,
          trainable=False,
          name='capacity') 
開發者ID:tensorflow,項目名稱:privacy,代碼行數:38,代碼來源:tensor_buffer.py

示例5: _init_placeholders

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def _init_placeholders(self):
        self.input_ids_ph = tf.placeholder(shape=(None, None), dtype=tf.int32, name='ids_ph')
        self.input_masks_ph = tf.placeholder(shape=(None, None), dtype=tf.int32, name='masks_ph')
        self.token_types_ph = tf.placeholder(shape=(None, None), dtype=tf.int32, name='token_types_ph')

        self.is_train_ph = tf.placeholder_with_default(False, shape=[], name='is_train_ph') 
開發者ID:deepmipt,項目名稱:DeepPavlov,代碼行數:8,代碼來源:bert_as_summarizer.py

示例6: execute_tpu_tf1

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def execute_tpu_tf1(self, compute_fn, inputs, graph=None):
    """Executes compute_fn on TPU with Tensorflow 1.X.

    Args:
      compute_fn: a function containing Tensorflow computation that takes a list
        of input numpy tensors, performs computation and returns output numpy
        tensors.
      inputs: a list of numpy arrays to feed input to the `compute_fn`.
      graph: (optional) If not None, provided `graph` is used for computation
        instead of a brand new tf.Graph().

    Returns:
      A list of numpy arrays or a single numpy array.
    """
    with self.session(graph=(graph or tf.Graph())) as sess:
      placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
      def wrap_graph_fn(*args, **kwargs):
        results = compute_fn(*args, **kwargs)
        if (not (isinstance(results, dict) or isinstance(results, tf.Tensor))
            and hasattr(results, '__iter__')):
          results = list(results)
        return results
      tpu_computation = contrib_tpu.rewrite(wrap_graph_fn, placeholders)
      sess.run(contrib_tpu.initialize_system())
      sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
                tf.local_variables_initializer()])
      materialized_results = sess.run(tpu_computation,
                                      feed_dict=dict(zip(placeholders, inputs)))
      sess.run(contrib_tpu.shutdown_system())
    return self.maybe_extract_single_output(materialized_results) 
開發者ID:tensorflow,項目名稱:models,代碼行數:32,代碼來源:test_case.py

示例7: execute_cpu_tf1

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def execute_cpu_tf1(self, compute_fn, inputs, graph=None):
    """Executes compute_fn on CPU with Tensorflow 1.X.

    Args:
      compute_fn: a function containing Tensorflow computation that takes a list
        of input numpy tensors, performs computation and returns output numpy
        tensors.
      inputs: a list of numpy arrays to feed input to the `compute_fn`.
      graph: (optional) If not None, provided `graph` is used for computation
        instead of a brand new tf.Graph().

    Returns:
      A list of numpy arrays or a single numpy array.
    """
    if self.is_tf2():
      raise ValueError('Required version Tenforflow 1.X is not available.')
    with self.session(graph=(graph or tf.Graph())) as sess:
      placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
      results = compute_fn(*placeholders)
      if (not (isinstance(results, dict) or isinstance(results, tf.Tensor)) and
          hasattr(results, '__iter__')):
        results = list(results)
      sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
                tf.local_variables_initializer()])
      materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
                                                                  inputs)))
    return self.maybe_extract_single_output(materialized_results) 
開發者ID:tensorflow,項目名稱:models,代碼行數:29,代碼來源:test_case.py

示例8: Input

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def Input(self, shape):
    """Builds an Input layer.

    Overrides the Keras application Input layer with one that uses a
    tf.placeholder_with_default instead of a tf.placeholder. This is necessary
    to ensure the application works when run on a TPU.

    Args:
      shape: The shape for the input layer to use. (Does not include a dimension
        for the batch size).
    Returns:
      An input layer for the specified shape that internally uses a
      placeholder_with_default.
    """
    default_size = 224
    default_batch_size = 1
    shape = list(shape)
    default_shape = [default_size if dim is None else dim for dim in shape]

    input_tensor = tf.constant(0.0, shape=[default_batch_size] + default_shape)

    placeholder_with_default = tf.placeholder_with_default(
        input=input_tensor, shape=[None] + shape)
    return model_utils.input_layer(shape, placeholder_with_default)

  # pylint: disable=unused-argument 
開發者ID:tensorflow,項目名稱:models,代碼行數:28,代碼來源:mobilenet_v1.py

示例9: Input

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def Input(self, shape):
    """Builds an Input layer.

    Overrides the Keras application Input layer with one that uses a
    tf.placeholder_with_default instead of a tf.placeholder. This is necessary
    to ensure the application works when run on a TPU.

    Args:
      shape: A tuple of integers representing the shape of the input, which
        includes both spatial share and channels, but not the batch size.
        Elements of this tuple can be None; 'None' elements represent dimensions
        where the shape is not known.

    Returns:
      An input layer for the specified shape that internally uses a
      placeholder_with_default.
    """
    default_size = 224
    default_batch_size = 1
    shape = list(shape)
    default_shape = [default_size if dim is None else dim for dim in shape]

    input_tensor = tf.constant(0.0, shape=[default_batch_size] + default_shape)

    placeholder_with_default = tf.placeholder_with_default(
        input=input_tensor, shape=[None] + shape)
    return model_utils.input_layer(shape, placeholder_with_default) 
開發者ID:tensorflow,項目名稱:models,代碼行數:29,代碼來源:resnet_v1.py

示例10: testStates

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def testStates(self):
    batch_size = 1
    beam_size = 1
    vocab_size = 2
    decode_length = 3

    initial_ids = tf.constant([0] * batch_size)  # GO
    probabilities = tf.constant([[[0.7, 0.3]], [[0.4, 0.6]], [[0.5, 0.5]]])

    expected_states = tf.constant([[[0.]], [[1.]]])

    def symbols_to_logits(ids, _, states):
      pos = tf.shape(ids)[1] - 1
      # We have to assert the values of state inline here since we can't fetch
      # them out of the loop!
      with tf.control_dependencies(
          [tf.assert_equal(states["state"], expected_states[pos])]):
        logits = tf.to_float(tf.log(probabilities[pos, :]))

      states["state"] += 1
      return logits, states

    states = {
        "state": tf.zeros((batch_size, 1)),
    }
    states["state"] = tf.placeholder_with_default(
        states["state"], shape=(None, 1))

    final_ids, _, _ = beam_search.beam_search(
        symbols_to_logits,
        initial_ids,
        beam_size,
        decode_length,
        vocab_size,
        0.0,
        eos_id=1,
        states=states)

    with self.test_session() as sess:
      # Catch and fail so that the testing framework doesn't think it's an error
      try:
        sess.run(final_ids)
      except tf.errors.InvalidArgumentError as e:
        raise AssertionError(e.message) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:46,代碼來源:beam_search_test.py

示例11: testStateBeamTwo

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def testStateBeamTwo(self):
    batch_size = 1
    beam_size = 2
    vocab_size = 3
    decode_length = 3

    initial_ids = tf.constant([0] * batch_size)  # GO
    probabilities = tf.constant([[[0.1, 0.1, 0.8], [0.1, 0.1, 0.8]],
                                 [[0.4, 0.5, 0.1], [0.2, 0.4, 0.4]],
                                 [[0.05, 0.9, 0.05], [0.4, 0.4, 0.2]]])

    # The top beam is always selected so we should see the top beam's state
    # at each position, which is the one thats getting 3 added to it each step.
    expected_states = tf.constant([[[0.], [0.]], [[3.], [3.]], [[6.], [6.]]])

    def symbols_to_logits(ids, _, states):
      pos = tf.shape(ids)[1] - 1

      # We have to assert the values of state inline here since we can't fetch
      # them out of the loop!
      with tf.control_dependencies(
          [tf.assert_equal(states["state"], expected_states[pos])]):
        logits = tf.to_float(tf.log(probabilities[pos, :]))

      states["state"] += tf.constant([[3.], [7.]])
      return logits, states

    states = {
        "state": tf.zeros((batch_size, 1)),
    }
    states["state"] = tf.placeholder_with_default(
        states["state"], shape=(None, 1))

    final_ids, _, _ = beam_search.beam_search(
        symbols_to_logits,
        initial_ids,
        beam_size,
        decode_length,
        vocab_size,
        0.0,
        eos_id=1,
        states=states)

    with self.test_session() as sess:
      # Catch and fail so that the testing framework doesn't think it's an error
      try:
        sess.run(final_ids)
      except tf.errors.InvalidArgumentError as e:
        raise AssertionError(e.message) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:51,代碼來源:beam_search_test.py

示例12: testTPUBeam

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def testTPUBeam(self):
    batch_size = 1
    beam_size = 2
    vocab_size = 3
    decode_length = 3

    initial_ids = tf.constant([0] * batch_size)  # GO
    probabilities = tf.constant([[[0.1, 0.1, 0.8], [0.1, 0.1, 0.8]],
                                 [[0.4, 0.5, 0.1], [0.2, 0.4, 0.4]],
                                 [[0.05, 0.9, 0.05], [0.4, 0.4, 0.2]]])

    # The top beam is always selected so we should see the top beam's state
    # at each position, which is the one thats getting 3 added to it each step.
    expected_states = tf.constant([[[0.], [0.]], [[3.], [3.]], [[6.], [6.]]])

    def symbols_to_logits(_, i, states):
      # We have to assert the values of state inline here since we can't fetch
      # them out of the loop!
      with tf.control_dependencies(
          [tf.assert_equal(states["state"], expected_states[i])]):
        logits = tf.to_float(tf.log(probabilities[i, :]))

      states["state"] += tf.constant([[3.], [7.]])
      return logits, states

    states = {
        "state": tf.zeros((batch_size, 1)),
    }
    states["state"] = tf.placeholder_with_default(
        states["state"], shape=(None, 1))

    final_ids, _, _ = beam_search.beam_search(
        symbols_to_logits,
        initial_ids,
        beam_size,
        decode_length,
        vocab_size,
        3.5,
        eos_id=1,
        states=states,
        use_tpu=True)

    with self.test_session() as sess:
      # Catch and fail so that the testing framework doesn't think it's an error
      try:
        sess.run(final_ids)
      except tf.errors.InvalidArgumentError as e:
        raise AssertionError(e.message)
    self.assertAllEqual([[[0, 2, 0, 1], [0, 2, 1, 0]]], final_ids) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:51,代碼來源:beam_search_test.py

示例13: mobilenet_v1

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder_with_default [as 別名]
def mobilenet_v1(batchnorm_training,
                 default_batchnorm_momentum=0.9997,
                 conv_hyperparams=None,
                 use_explicit_padding=False,
                 alpha=1.0,
                 min_depth=None,
                 conv_defs=None,
                 **kwargs):
  """Instantiates the MobileNetV1 architecture, modified for object detection.

  This wraps the MobileNetV1 tensorflow Keras application, but uses the
  Keras application's kwargs-based monkey-patching API to override the Keras
  architecture with the following changes:

  - Changes the default batchnorm momentum to 0.9997
  - Applies the Object Detection hyperparameter configuration
  - Supports FreezableBatchNorms
  - Adds support for a min number of filters for each layer
  - Makes the `alpha` parameter affect the final convolution block even if it
      is less than 1.0
  - Adds support for explicit padding of convolutions
  - Makes the Input layer use a tf.placeholder_with_default instead of a
      tf.placeholder, to work on TPUs.

  Args:
      batchnorm_training: Bool. Assigned to Batch norm layer `training` param
        when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
      default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
        batch norm layers will be constructed using this value as the momentum.
      conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
        containing hyperparameters for convolution ops. Optionally set to `None`
        to use default mobilenet_v1 layer builders.
      use_explicit_padding: If True, use 'valid' padding for convolutions,
        but explicitly pre-pads inputs so that the output dimensions are the
        same as if 'same' padding were used. Off by default.
      alpha: The width multiplier referenced in the MobileNetV1 paper. It
        modifies the number of filters in each convolutional layer.
      min_depth: Minimum number of filters in the convolutional layers.
      conv_defs: Network layout to specify the mobilenet_v1 body. Default is
        `None` to use the default mobilenet_v1 network layout.
      **kwargs: Keyword arguments forwarded directly to the
        `tf.keras.applications.Mobilenet` method that constructs the Keras
        model.

  Returns:
      A Keras model instance.
  """
  layers_override = _LayersOverride(
      batchnorm_training,
      default_batchnorm_momentum=default_batchnorm_momentum,
      conv_hyperparams=conv_hyperparams,
      use_explicit_padding=use_explicit_padding,
      min_depth=min_depth,
      alpha=alpha,
      conv_defs=conv_defs)
  return tf.keras.applications.MobileNet(
      alpha=alpha, layers=layers_override, **kwargs)
# pylint: enable=invalid-name 
開發者ID:tensorflow,項目名稱:models,代碼行數:60,代碼來源:mobilenet_v1.py


注:本文中的tensorflow.compat.v1.placeholder_with_default方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。