當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.placeholder方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.placeholder方法的具體用法?Python v1.placeholder怎麽用?Python v1.placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.placeholder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def build(self, input_shape):
        with self._sess.graph.as_default():
            self._placeholders["tokens"] = tf.placeholder(
                dtype=tf.int32, shape=[None, None], name="tokens"
            )

            self._ops["output_logits"] = self.compute_logits(
                self._placeholders["tokens"]
            )
            self._ops["output_probs"] = tf.nn.softmax(self._ops["output_logits"], -1)
            result = self.compute_loss_and_acc(
                rnn_output_logits=self._ops["output_logits"],
                target_token_seq=self._placeholders["tokens"],
            )
            self._ops["loss"] = result.token_ce_loss
            self._ops["num_tokens"] = result.num_predictions
            self._ops["num_correct_tokens"] = result.num_correct_token_predictions
            self._ops["train_step"] = self._make_training_step(self._ops["loss"])

            init_op = tf.variables_initializer(
                self._sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
            )
            self._sess.run(init_op) 
開發者ID:microsoft,項目名稱:machine-learning-for-programming-samples,代碼行數:25,代碼來源:model_tf1.py

示例2: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def __init__(self, hparams, action_space, observation_space, policy_dir):
    assert hparams.base_algo == "ppo"
    ppo_hparams = trainer_lib.create_hparams(hparams.base_algo_params)

    frame_stack_shape = (1, hparams.frame_stack_size) + observation_space.shape
    self._frame_stack = np.zeros(frame_stack_shape, dtype=np.uint8)

    with tf.Graph().as_default():
      self.obs_t = tf.placeholder(shape=self.frame_stack_shape, dtype=np.uint8)
      self.logits_t, self.value_function_t = get_policy(
          self.obs_t, ppo_hparams, action_space
      )
      model_saver = tf.train.Saver(
          tf.global_variables(scope=ppo_hparams.policy_network + "/.*")  # pylint: disable=unexpected-keyword-arg
      )
      self.sess = tf.Session()
      self.sess.run(tf.global_variables_initializer())
      trainer_lib.restore_checkpoint(policy_dir, model_saver,
                                     self.sess) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:player_utils.py

示例3: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def __init__(
      self, batch_size, observation_space, action_space, policy_hparams,
      policy_dir, sampling_temp
  ):
    super(PolicyAgent, self).__init__(
        batch_size, observation_space, action_space
    )
    self._sampling_temp = sampling_temp
    with tf.Graph().as_default():
      self._observations_t = tf.placeholder(
          shape=((batch_size,) + self.observation_space.shape),
          dtype=self.observation_space.dtype
      )
      (logits, self._values_t) = rl.get_policy(
          self._observations_t, policy_hparams, self.action_space
      )
      actions = common_layers.sample_with_temperature(logits, sampling_temp)
      self._probs_t = tf.nn.softmax(logits / sampling_temp)
      self._actions_t = tf.cast(actions, tf.int32)
      model_saver = tf.train.Saver(
          tf.global_variables(policy_hparams.policy_network + "/.*")  # pylint: disable=unexpected-keyword-arg
      )
      self._sess = tf.Session()
      self._sess.run(tf.global_variables_initializer())
      trainer_lib.restore_checkpoint(policy_dir, model_saver, self._sess) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:rl_utils.py

示例4: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def __init__(self, *args, **kwargs):
    with tf.Graph().as_default():
      self._batch_env = SimulatedBatchEnv(*args, **kwargs)

      self._actions_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32)
      self._rewards_t, self._dones_t = self._batch_env.simulate(self._actions_t)
      with tf.control_dependencies([self._rewards_t]):
        self._obs_t = self._batch_env.observ
      self._indices_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32)
      self._reset_op = self._batch_env.reset(
          tf.range(self.batch_size, dtype=tf.int32)
      )

      self._sess = tf.Session()
      self._sess.run(tf.global_variables_initializer())
      self._batch_env.initialize(self._sess) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:simulated_batch_gym_env.py

示例5: get_zipped_dataset_from_predictions

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def get_zipped_dataset_from_predictions(predictions):
  """Creates dataset from in-memory predictions."""
  targets = stack_data_given_key(predictions, "targets")
  outputs = stack_data_given_key(predictions, "outputs")
  num_videos, num_steps = targets.shape[:2]

  # Truncate output time-steps to match target time-steps
  outputs = outputs[:, :num_steps]

  targets_placeholder = tf.placeholder(targets.dtype, targets.shape)
  outputs_placeholder = tf.placeholder(outputs.dtype, outputs.shape)
  dataset = tf.data.Dataset.from_tensor_slices(
      (targets_placeholder, outputs_placeholder))
  iterator = dataset.make_initializable_iterator()
  feed_dict = {targets_placeholder: targets,
               outputs_placeholder: outputs}
  return iterator, feed_dict, num_videos 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:video_metrics.py

示例6: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def __init__(self, batch_size, *args, **kwargs):
    self._store_rollouts = kwargs.pop("store_rollouts", True)

    super(T2TEnv, self).__init__(*args, **kwargs)

    self.batch_size = batch_size
    self._rollouts_by_epoch_and_split = collections.OrderedDict()
    self.current_epoch = None
    self._should_preprocess_on_reset = True
    with tf.Graph().as_default() as tf_graph:
      self._tf_graph = _Noncopyable(tf_graph)
      self._decoded_image_p = _Noncopyable(
          tf.placeholder(dtype=tf.uint8, shape=(None, None, None))
      )
      self._encoded_image_t = _Noncopyable(
          tf.image.encode_png(self._decoded_image_p.obj)
      )
      self._encoded_image_p = _Noncopyable(tf.placeholder(tf.string))
      self._decoded_image_t = _Noncopyable(
          tf.image.decode_png(self._encoded_image_p.obj)
      )
      self._session = _Noncopyable(tf.Session()) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:gym_env.py

示例7: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_png(self._png_data, channels=3)
    self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that converts CMYK JPEG data to RGB JPEG data.
    self._cmyk_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_jpeg(self._cmyk_data, channels=0)
    self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) 
開發者ID:google-research,項目名稱:morph-net,代碼行數:19,代碼來源:build_imagenet_data.py

示例8: _init_graph

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def _init_graph(self):
    """Initialize computation graph for tensorflow.
    """
    with self.graph.as_default():
      self.refiner = im.ImNet(dim=self.dim,
                              in_features=self.codelen,
                              out_features=self.out_features,
                              num_filters=self.num_filters)
      self.global_step = tf.get_variable('global_step', shape=[],
                                         dtype=tf.int64)

      self.pts_ph = tf.placeholder(tf.float32, shape=[self.point_batch, 3])
      self.lat_ph = tf.placeholder(tf.float32, shape=[self.codelen])

      lat = tf.broadcast_to(self.lat_ph[tf.newaxis],
                            [self.point_batch, self.codelen])
      code = tf.concat((self.pts_ph, lat), axis=-1)  # [pb, 3+c]

      vals = self.refiner(code, training=False)  # [pb, 1]
      self.vals = tf.squeeze(vals, axis=1)  # [pb]
      self.saver = tf.train.Saver()
      self.sess = tf.Session()
      self.saver.restore(self.sess, self.ckpt) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:25,代碼來源:evaluator.py

示例9: build_squad_serving_input_fn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def build_squad_serving_input_fn(seq_length):
  """Builds a serving input fn for raw input."""

  def _seq_serving_input_fn():
    """Serving input fn for raw images."""
    input_ids = tf.placeholder(
        shape=[1, seq_length], name="input_ids", dtype=tf.int32)
    input_mask = tf.placeholder(
        shape=[1, seq_length], name="input_mask", dtype=tf.int32)
    segment_ids = tf.placeholder(
        shape=[1, seq_length], name="segment_ids", dtype=tf.int32)

    inputs = {
        "input_ids": input_ids,
        "input_mask": input_mask,
        "segment_ids": segment_ids
    }
    return tf.estimator.export.ServingInputReceiver(features=inputs,
                                                    receiver_tensors=inputs)

  return _seq_serving_input_fn 
開發者ID:google-research,項目名稱:albert,代碼行數:23,代碼來源:run_squad_v1.py

示例10: serving_input_receiver_fn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def serving_input_receiver_fn():
  """Creates an input function for serving."""
  seq_len = FLAGS.max_seq_length
  serialized_example = tf.placeholder(
      dtype=tf.string, shape=[None], name="serialized_example")
  features = {
      "input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
  }
  feature_map = tf.parse_example(serialized_example, features=features)
  feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32)
  feature_map["label_ids"] = tf.constant(0, dtype=tf.int32)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in feature_map.keys():
    t = feature_map[name]
    if t.dtype == tf.int64:
      t = tf.to_int32(t)
    feature_map[name] = t

  return tf.estimator.export.ServingInputReceiver(
      features=feature_map, receiver_tensors=serialized_example) 
開發者ID:google-research,項目名稱:albert,代碼行數:26,代碼來源:run_classifier.py

示例11: _ValidateProvideBatchPlaceholder

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def _ValidateProvideBatchPlaceholder(self,
                                       truncated_length,
                                       batch_size,
                                       lengths,
                                       expected_num_inputs):
    examples, expected_inputs = self._CreateExamplesAndExpectedInputs(
        truncated_length, lengths, expected_num_inputs)
    examples_ph = tf.placeholder(tf.string, [None])
    feed_dict = {examples_ph: [e.SerializeToString() for e in examples]}

    self._ValidateProvideBatch(
        examples_ph,
        truncated_length,
        batch_size,
        expected_inputs,
        feed_dict=feed_dict) 
開發者ID:magenta,項目名稱:magenta,代碼行數:18,代碼來源:data_test.py

示例12: testTfUnsliced

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def testTfUnsliced(self):
    converter = self.converter_class(steps_per_quarter=1, slice_bars=None)
    with self.test_session() as sess:
      sequence = tf.placeholder(tf.string)
      input_tensors_, output_tensors_, _, lengths_ = data.convert_to_tensors_op(
          sequence, converter)
      input_tensors, output_tensors, lengths = sess.run(
          [input_tensors_, output_tensors_, lengths_],
          feed_dict={sequence: self.sequence.SerializeToString()})
    actual_input_tensors = [t[:l] for t, l in zip(input_tensors, lengths)]
    actual_unsliced_labels = [
        np.argmax(t, axis=-1)[:l] for t, l in zip(output_tensors, lengths)]

    self.assertArraySetsEqual(
        self.labels_to_inputs(self.expected_unsliced_labels, converter),
        actual_input_tensors)
    self.assertArraySetsEqual(
        self.expected_unsliced_labels, actual_unsliced_labels) 
開發者ID:magenta,項目名稱:magenta,代碼行數:20,代碼來源:data_test.py

示例13: testTfSliced

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def testTfSliced(self):
    converter = self.converter_class(
        steps_per_quarter=1, slice_bars=2, max_tensors_per_notesequence=None)
    with self.test_session() as sess:
      sequence = tf.placeholder(tf.string)
      input_tensors_, output_tensors_, _, lengths_ = data.convert_to_tensors_op(
          sequence, converter)
      input_tensors, output_tensors, lengths = sess.run(
          [input_tensors_, output_tensors_, lengths_],
          feed_dict={sequence: self.sequence.SerializeToString()})
    actual_sliced_labels = [
        np.argmax(t, axis=-1)[:l] for t, l in zip(output_tensors, lengths)]

    self.assertArraySetsEqual(
        self.labels_to_inputs(self.expected_sliced_labels, converter),
        input_tensors)
    self.assertArraySetsEqual(self.expected_sliced_labels, actual_sliced_labels) 
開發者ID:magenta,項目名稱:magenta,代碼行數:19,代碼來源:data_test.py

示例14: testTfUnslicedChordConditioned

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def testTfUnslicedChordConditioned(self):
    converter = self.converter_class(
        steps_per_quarter=1,
        slice_bars=None,
        chord_encoding=note_seq.MajorMinorChordOneHotEncoding())
    with self.test_session() as sess:
      sequence = tf.placeholder(tf.string)
      input_tensors_, output_tensors_, control_tensors_, lengths_ = (
          data.convert_to_tensors_op(sequence, converter))
      input_tensors, output_tensors, control_tensors, lengths = sess.run(
          [input_tensors_, output_tensors_, control_tensors_, lengths_],
          feed_dict={sequence: self.sequence.SerializeToString()})
    actual_input_tensors = [t[:l] for t, l in zip(input_tensors, lengths)]
    actual_unsliced_labels = [
        np.argmax(t, axis=-1)[:l] for t, l in zip(output_tensors, lengths)]
    actual_unsliced_chord_labels = [
        np.argmax(t, axis=-1)[:l] for t, l in zip(control_tensors, lengths)]

    self.assertArraySetsEqual(
        self.labels_to_inputs(self.expected_unsliced_labels, converter),
        actual_input_tensors)
    self.assertArraySetsEqual(
        self.expected_unsliced_labels, actual_unsliced_labels)
    self.assertArraySetsEqual(
        self.expected_unsliced_chord_labels, actual_unsliced_chord_labels) 
開發者ID:magenta,項目名稱:magenta,代碼行數:27,代碼來源:data_test.py

示例15: testTfSlicedChordConditioned

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import placeholder [as 別名]
def testTfSlicedChordConditioned(self):
    converter = self.converter_class(
        steps_per_quarter=1,
        slice_bars=2,
        max_tensors_per_notesequence=None,
        chord_encoding=note_seq.MajorMinorChordOneHotEncoding())
    with self.test_session() as sess:
      sequence = tf.placeholder(tf.string)
      input_tensors_, output_tensors_, control_tensors_, lengths_ = (
          data.convert_to_tensors_op(sequence, converter))
      input_tensors, output_tensors, control_tensors, lengths = sess.run(
          [input_tensors_, output_tensors_, control_tensors_, lengths_],
          feed_dict={sequence: self.sequence.SerializeToString()})
    actual_sliced_labels = [
        np.argmax(t, axis=-1)[:l] for t, l in zip(output_tensors, lengths)]
    actual_sliced_chord_labels = [
        np.argmax(t, axis=-1)[:l] for t, l in zip(control_tensors, lengths)]

    self.assertArraySetsEqual(
        self.labels_to_inputs(self.expected_sliced_labels, converter),
        input_tensors)
    self.assertArraySetsEqual(self.expected_sliced_labels, actual_sliced_labels)
    self.assertArraySetsEqual(
        self.expected_sliced_chord_labels, actual_sliced_chord_labels) 
開發者ID:magenta,項目名稱:magenta,代碼行數:26,代碼來源:data_test.py


注:本文中的tensorflow.compat.v1.placeholder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。