本文整理匯總了Python中tensorflow.compat.v1.parse_single_example方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.parse_single_example方法的具體用法?Python v1.parse_single_example怎麽用?Python v1.parse_single_example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.parse_single_example方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _parse_fn
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def _parse_fn(self, value):
"""Parses an image and its label from a serialized TFExample.
Args:
value: serialized string containing an TFExample.
Returns:
Returns a tuple of (image, label) from the TFExample.
"""
if FLAGS.get_flag_value('pseudo_label_key', None):
self.ORIGINAL_LABEL_KEY = FLAGS.get_flag_value(
'original_label_key', None)
assert self.ORIGINAL_LABEL_KEY is not None, (
'You must set original_label_key for pseudo labeling.')
#Replace original label_key with pseudo_label_key.
self.LABEL_KEY = FLAGS.get_flag_value('pseudo_label_key', None)
self.FEATURE_MAP.update({
self.LABEL_KEY: tf.FixedLenFeature(shape=[], dtype=tf.int64),
self.ORIGINAL_LABEL_KEY: tf.FixedLenFeature(
shape=[], dtype=tf.int64),
self.FLAG_KEY: tf.FixedLenFeature(shape=[], dtype=tf.int64),
})
return tf.parse_single_example(value, self.FEATURE_MAP)
示例2: __call__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def __call__(self, example_string):
"""Processes a single example string.
Extracts and processes the feature, and ignores the label.
Args:
example_string: str, an Example protocol buffer.
Returns:
feat: The feature tensor.
"""
feat = tf.parse_single_example(
example_string,
features={
'image/embedding':
tf.FixedLenFeature([self.feat_len], dtype=tf.float32),
'image/class/label':
tf.FixedLenFeature([], tf.int64)
})['image/embedding']
return feat
示例3: tfrecord_iterator
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def tfrecord_iterator(filenames, gzipped=False, example_spec=None):
"""Yields records from TFRecord files.
Args:
filenames: list<str>, list of TFRecord filenames to read from.
gzipped: bool, whether the TFRecord files are gzip-encoded.
example_spec: dict<str feature name, tf.VarLenFeature/tf.FixedLenFeature>,
if provided, will parse each record as a tensorflow.Example proto.
Yields:
Records (or parsed Examples, if example_spec is provided) from files.
"""
with tf.Graph().as_default():
dataset = tf.data.Dataset.from_tensor_slices(filenames)
def _load_records(filename):
return tf.data.TFRecordDataset(
filename,
compression_type=tf.constant("GZIP") if gzipped else None,
buffer_size=16 * 1000 * 1000)
dataset = dataset.flat_map(_load_records)
def _parse_example(ex_ser):
return tf.parse_single_example(ex_ser, example_spec)
if example_spec:
dataset = dataset.map(_parse_example, num_parallel_calls=32)
dataset = dataset.prefetch(100)
record_it = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
while True:
try:
ex = sess.run(record_it)
yield ex
except tf.errors.OutOfRangeError:
break
示例4: _decode_record
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
示例5: _decode_record
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
示例6: parse_example
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def parse_example(example_proto):
features = {
'id': tf.FixedLenFeature(shape=(), dtype=tf.string),
'sequence': tf.FixedLenFeature(shape=(), dtype=tf.string),
'audio': tf.FixedLenFeature(shape=(), dtype=tf.string),
'velocity_range': tf.FixedLenFeature(shape=(), dtype=tf.string),
}
record = tf.parse_single_example(example_proto, features)
return record
示例7: parse_preprocessed_example
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def parse_preprocessed_example(example_proto):
"""Process an already preprocessed Example proto into input tensors."""
features = {
'spec': tf.VarLenFeature(dtype=tf.float32),
'spectrogram_hash': tf.FixedLenFeature(shape=(), dtype=tf.int64),
'labels': tf.VarLenFeature(dtype=tf.float32),
'label_weights': tf.VarLenFeature(dtype=tf.float32),
'length': tf.FixedLenFeature(shape=(), dtype=tf.int64),
'onsets': tf.VarLenFeature(dtype=tf.float32),
'offsets': tf.VarLenFeature(dtype=tf.float32),
'velocities': tf.VarLenFeature(dtype=tf.float32),
'sequence_id': tf.FixedLenFeature(shape=(), dtype=tf.string),
'note_sequence': tf.FixedLenFeature(shape=(), dtype=tf.string),
}
record = tf.parse_single_example(example_proto, features)
input_tensors = InputTensors(
spec=tf.sparse.to_dense(record['spec']),
spectrogram_hash=record['spectrogram_hash'],
labels=tf.sparse.to_dense(record['labels']),
label_weights=tf.sparse.to_dense(record['label_weights']),
length=record['length'],
onsets=tf.sparse.to_dense(record['onsets']),
offsets=tf.sparse.to_dense(record['offsets']),
velocities=tf.sparse.to_dense(record['velocities']),
sequence_id=record['sequence_id'],
note_sequence=record['note_sequence'])
return input_tensors
示例8: get_example
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def get_example(self, batch_size):
"""Get a single example from the tfrecord file.
Args:
batch_size: Int, minibatch size.
Returns:
tf.Example protobuf parsed from tfrecord.
"""
reader = tf.TFRecordReader()
num_epochs = None if self.is_training else 1
capacity = batch_size
path_queue = tf.train.input_producer(
[self.record_path],
num_epochs=num_epochs,
shuffle=self.is_training,
capacity=capacity)
unused_key, serialized_example = reader.read(path_queue)
features = {
"note_str": tf.FixedLenFeature([], dtype=tf.string),
"pitch": tf.FixedLenFeature([1], dtype=tf.int64),
"velocity": tf.FixedLenFeature([1], dtype=tf.int64),
"audio": tf.FixedLenFeature([64000], dtype=tf.float32),
"qualities": tf.FixedLenFeature([10], dtype=tf.int64),
"instrument_source": tf.FixedLenFeature([1], dtype=tf.int64),
"instrument_family": tf.FixedLenFeature([1], dtype=tf.int64),
}
example = tf.parse_single_example(serialized_example, features)
return example
示例9: parse_example
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def parse_example(serialized_example):
"""Parse example."""
features = tf.parse_single_example(
serialized_example,
features={
"question": tf.FixedLenFeature([], tf.string),
"context": tf.FixedLenFeature([], tf.string),
"answer_start": tf.FixedLenFeature([], tf.int64),
"answer_end": tf.FixedLenFeature([], tf.int64),
})
features["question"] = split_on_whitespace(features["question"])
features["context"] = split_on_whitespace(features["context"])
features["answer_start"] = tf.to_int32(features["answer_start"])
features["answer_end"] = tf.to_int32(features["answer_end"])
return features
示例10: _get_cached_dataset
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def _get_cached_dataset(self, split=tfds.Split.TRAIN, shuffle=True):
"""Returns a tf.data.Dataset read from cached files."""
self.assert_cached()
with tf.io.gfile.GFile(get_info_path(self.cache_dir, split)) as f:
split_info = json.load(f)
# Use `FixedLenSequenceFeature` for sequences with variable length.
def _feature_config(shape, dtype):
if shape and shape[0] is None:
return tf.io.FixedLenSequenceFeature(
shape[1:], dtype, allow_missing=True)
return tf.io.FixedLenFeature(shape, dtype)
feature_desc = {
feat: _feature_config(**desc)
for feat, desc in split_info["features"].items()}
ds = tf.data.Dataset.list_files(
"%s-*-of-*%d" % (
get_tfrecord_prefix(self.cache_dir, split),
split_info["num_shards"]),
shuffle=shuffle)
ds = ds.interleave(
tf.data.TFRecordDataset,
cycle_length=16, block_length=16,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds = ds.map(lambda ex: tf.parse_single_example(ex, feature_desc),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
if self.get_cached_stats(split)["examples"] <= _MAX_EXAMPLES_TO_MEM_CACHE:
ds = ds.cache()
return ds
示例11: build_input
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def build_input(tfrecord_paths):
"""Builds the graph's input.
Args:
tfrecord_paths: List of paths to the input TFRecords
Returns:
serialized_example_tensor: The next serialized example. String scalar Tensor
image_tensor: The decoded image of the example. Uint8 tensor,
shape=[1, None, None,3]
"""
filename_queue = tf.train.string_input_producer(
tfrecord_paths, shuffle=False, num_epochs=1)
tf_record_reader = tf.TFRecordReader()
_, serialized_example_tensor = tf_record_reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example_tensor,
features={
standard_fields.TfExampleFields.image_encoded:
tf.FixedLenFeature([], tf.string),
})
encoded_image = features[standard_fields.TfExampleFields.image_encoded]
image_tensor = tf.image.decode_image(encoded_image, channels=3)
image_tensor.set_shape([None, None, 3])
image_tensor = tf.expand_dims(image_tensor, 0)
return serialized_example_tensor, image_tensor
示例12: read_single_example
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def read_single_example(example_string):
"""Parses the record string."""
return tf.parse_single_example(
example_string,
features={
'image': tf.FixedLenFeature([], dtype=tf.string),
'label': tf.FixedLenFeature([], tf.int64)
})
示例13: _wiki_articles
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def _wiki_articles(shard_id, wikis_dir=None):
"""Generates WikipediaArticles from GCS that are part of shard shard_id."""
if not wikis_dir:
wikis_dir = WIKI_CONTENT_DIR
with tf.Graph().as_default():
dataset = tf.data.TFRecordDataset(
cc_utils.readahead(
os.path.join(wikis_dir, WIKI_CONTENT_FILE % shard_id)),
buffer_size=16 * 1000 * 1000)
def _parse_example(ex_ser):
"""Parse serialized Example containing Wikipedia article content."""
features = {
"url": tf.VarLenFeature(tf.string),
"title": tf.VarLenFeature(tf.string),
"section_titles": tf.VarLenFeature(tf.string),
"section_texts": tf.VarLenFeature(tf.string),
}
ex = tf.parse_single_example(ex_ser, features)
for k in ex.keys():
ex[k] = ex[k].values
ex["url"] = ex["url"][0]
ex["title"] = ex["title"][0]
return ex
dataset = dataset.map(_parse_example, num_parallel_calls=32)
dataset = dataset.prefetch(100)
record_it = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
while True:
try:
ex = sess.run(record_it)
except tf.errors.OutOfRangeError:
break
sections = [
WikipediaSection(title=text_encoder.to_unicode(title),
text=text_encoder.to_unicode(text))
for title, text in zip(ex["section_titles"], ex["section_texts"])
]
yield WikipediaArticle(
url=text_encoder.to_unicode(ex["url"]),
title=text_encoder.to_unicode(ex["title"]),
sections=sections)
示例14: file_based_input_fn_builder
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder, task_name, use_tpu, bsz,
multiple=1):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
labeltype = tf.float32 if task_name == "sts-b" else tf.int64
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length * multiple], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length * multiple], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length * multiple], tf.int64),
"label_ids": tf.FixedLenFeature([], labeltype),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
if use_tpu:
batch_size = params["batch_size"]
else:
batch_size = bsz
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(
contrib_data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
示例15: input_fn_builder
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import parse_single_example [as 別名]
def input_fn_builder(input_file, seq_length, is_training,
drop_remainder, use_tpu, bsz, is_v2):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"unique_ids": tf.FixedLenFeature([], tf.int64),
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
}
# p_mask is not required for SQuAD v1.1
if is_v2:
name_to_features["p_mask"] = tf.FixedLenFeature([seq_length], tf.int64)
if is_training:
name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64)
name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64)
name_to_features["is_impossible"] = tf.FixedLenFeature([], tf.int64)
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
if use_tpu:
batch_size = params["batch_size"]
else:
batch_size = bsz
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(
contrib_data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn