本文整理匯總了Python中tensorflow.compat.v1.one_hot方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.one_hot方法的具體用法?Python v1.one_hot怎麽用?Python v1.one_hot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.one_hot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: two_class_log_likelihood
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def two_class_log_likelihood(predictions, labels, weights_fn=None):
"""Log-likelihood for two class classification with 0/1 labels.
Args:
predictions: A float valued tensor of shape [`batch_size`]. Each
component should be between 0 and 1.
labels: An int valued tensor of shape [`batch_size`]. Each component
should either be 0 or 1.
weights_fn: unused.
Returns:
A pair, with the average log likelihood in the first component.
"""
del weights_fn
float_predictions = tf.cast(tf.squeeze(predictions), dtype=tf.float64)
batch_probs = tf.stack([1. - float_predictions, float_predictions], axis=-1)
int_labels = tf.cast(tf.squeeze(labels), dtype=tf.int32)
onehot_targets = tf.cast(tf.one_hot(int_labels, 2), dtype=tf.float64)
chosen_probs = tf.einsum(
"ij,ij->i", batch_probs, onehot_targets, name="chosen_probs")
avg_log_likelihood = tf.reduce_mean(tf.log(chosen_probs))
return avg_log_likelihood, tf.constant(1.0)
示例2: set_precision
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def set_precision(predictions, labels,
weights_fn=common_layers.weights_nonzero):
"""Precision of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_precision", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例3: set_recall
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def set_recall(predictions, labels, weights_fn=common_layers.weights_nonzero):
"""Recall of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_recall", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例4: sigmoid_precision_one_hot
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def sigmoid_precision_one_hot(logits, labels, weights_fn=None):
"""Calculate precision for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
precision (scalar), weights
"""
with tf.variable_scope("sigmoid_precision_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, precision = tf.metrics.precision(labels=labels, predictions=predictions)
return precision, tf.constant(1.0)
示例5: sigmoid_recall_one_hot
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def sigmoid_recall_one_hot(logits, labels, weights_fn=None):
"""Calculate recall for a set, given one-hot labels and logits.
Predictions are converted to one-hot,
as predictions[example][arg-max(example)] = 1
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
recall (scalar), weights
"""
with tf.variable_scope("sigmoid_recall_one_hot", values=[logits, labels]):
del weights_fn
num_classes = logits.shape[-1]
predictions = tf.nn.sigmoid(logits)
predictions = tf.argmax(predictions, -1)
predictions = tf.one_hot(predictions, num_classes)
_, recall = tf.metrics.recall(labels=labels, predictions=predictions)
return recall, tf.constant(1.0)
示例6: testAccuracyTopKMetric
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def testAccuracyTopKMetric(self):
predictions = np.random.randint(1, 5, size=(12, 12, 12, 1))
targets = np.random.randint(1, 5, size=(12, 12, 12, 1))
expected = np.mean((predictions == targets).astype(float))
with self.test_session() as session:
predicted = tf.one_hot(predictions, depth=5, dtype=tf.float32)
scores1, _ = metrics.padded_accuracy_topk(
predicted, tf.constant(targets, dtype=tf.int32), k=1)
scores2, _ = metrics.padded_accuracy_topk(
predicted, tf.constant(targets, dtype=tf.int32), k=7)
a1 = tf.reduce_mean(scores1)
a2 = tf.reduce_mean(scores2)
session.run(tf.global_variables_initializer())
actual1, actual2 = session.run([a1, a2])
self.assertAlmostEqual(actual1, expected)
self.assertAlmostEqual(actual2, 1.0)
示例7: testPrefixAccuracy
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def testPrefixAccuracy(self):
vocab_size = 10
predictions = tf.one_hot(
tf.constant([[[1], [2], [3], [4], [9], [6], [7], [8]],
[[1], [2], [3], [4], [5], [9], [7], [8]],
[[1], [2], [3], [4], [5], [9], [7], [0]]]),
vocab_size)
labels = tf.expand_dims(
tf.constant([[[1], [2], [3], [4], [5], [6], [7], [8]],
[[1], [2], [3], [4], [5], [6], [7], [8]],
[[1], [2], [3], [4], [5], [6], [7], [0]]]),
axis=-1)
expected_accuracy = np.average([4.0 / 8.0,
5.0 / 8.0,
5.0 / 7.0])
accuracy, _ = metrics.prefix_accuracy(predictions, labels)
with self.test_session() as session:
accuracy_value = session.run(accuracy)
self.assertAlmostEqual(expected_accuracy, accuracy_value)
示例8: testSequenceEditDistanceMetric
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def testSequenceEditDistanceMetric(self):
predictions = np.array([[3, 4, 5, 1, 0, 0],
[2, 1, 3, 4, 0, 0],
[2, 1, 3, 4, 0, 0]])
# Targets are just a bit different:
# - first sequence has a different prediction
# - second sequence has a different prediction and one extra step
# - third sequence is identical
targets = np.array([[5, 4, 5, 1, 0, 0],
[2, 5, 3, 4, 1, 0],
[2, 1, 3, 4, 0, 0]])
# Reshape to match expected input format by metric fns.
predictions = np.reshape(predictions, [3, 6, 1, 1])
targets = np.reshape(targets, [3, 6, 1, 1])
with self.test_session() as session:
scores, weight = metrics.sequence_edit_distance(
tf.one_hot(predictions, depth=6, dtype=tf.float32),
tf.constant(targets, dtype=tf.int32))
session.run(tf.global_variables_initializer())
actual_scores, actual_weight = session.run([scores, weight])
self.assertAlmostEqual(actual_scores, 3.0 / 13)
self.assertEqual(actual_weight, 13)
示例9: testNegativeLogPerplexityMaskedAssert
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def testNegativeLogPerplexityMaskedAssert(self):
predictions = np.random.randint(4, size=(12, 12, 12, 1))
targets = np.random.randint(4, size=(12, 12, 12, 1))
features = {}
with self.assertRaisesRegexp(
ValueError,
'masked_neg_log_perplexity requires targets_mask feature'):
with self.test_session() as session:
scores, _ = metrics.padded_neg_log_perplexity_with_masking(
tf.one_hot(predictions, depth=4, dtype=tf.float32),
tf.constant(targets, dtype=tf.int32),
features)
a = tf.reduce_mean(scores)
session.run(tf.global_variables_initializer())
_ = session.run(a)
示例10: testMultilabelMatch3
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def testMultilabelMatch3(self):
predictions = np.random.randint(1, 5, size=(100, 1, 1, 1))
targets = np.random.randint(1, 5, size=(100, 10, 1, 1))
weights = np.random.randint(0, 2, size=(100, 1, 1, 1))
targets *= weights
predictions_repeat = np.repeat(predictions, 10, axis=1)
expected = (predictions_repeat == targets).astype(float)
expected = np.sum(expected, axis=(1, 2, 3))
expected = np.minimum(expected / 3.0, 1.)
expected = np.sum(expected * weights[:, 0, 0, 0]) / weights.shape[0]
with self.test_session() as session:
scores, weights_ = metrics.multilabel_accuracy_match3(
tf.one_hot(predictions, depth=5, dtype=tf.float32),
tf.constant(targets, dtype=tf.int32))
a, a_op = tf.metrics.mean(scores, weights_)
session.run(tf.local_variables_initializer())
session.run(tf.global_variables_initializer())
_ = session.run(a_op)
actual = session.run(a)
self.assertAlmostEqual(actual, expected, places=6)
示例11: initialize_write_strengths
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def initialize_write_strengths(self, batch_size):
"""Initialize write strengths to write to the first memory address.
This is exposed as its own function so that it can be overridden to provide
alternate write adressing schemes.
Args:
batch_size: The size of the current batch.
Returns:
A tf.float32 tensor of shape [num_write_heads, memory_size, 1] where the
first element in the second dimension is set to 1.0.
"""
return tf.expand_dims(
tf.one_hot([[0] * self._num_write_heads] * batch_size,
depth=self._memory_size, dtype=tf.float32), axis=3)
示例12: vq_nearest_neighbor
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def vq_nearest_neighbor(x, hparams):
"""Find the nearest element in means to elements in x."""
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if hparams.bottleneck_kind == "em":
x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=bottleneck_size)
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
x_means_idx = tf.argmax(-dist, axis=-1)
x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
x_means = tf.matmul(x_means_hot, means)
e_loss = tf.reduce_mean(tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, e_loss
示例13: fill_memory_slot
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def fill_memory_slot(memory, value, index):
"""Fills the memory slot at a particular index with the given value.
Args:
memory: a 4-d tensor [memory_size, batch, length, channel] containing
the state of all steps
value: a 3-d tensor [batch, length, channel] as the sate
index: integer in [0, memory_size)
Returns:
filled memory
"""
mask = tf.to_float(
tf.one_hot(index,
tf.shape(memory)[0])[:, None, None, None])
fill_memory = (1 - mask) * memory + mask * value[None, ...]
return fill_memory
示例14: gumbel_sample
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def gumbel_sample(self, reconstr_gan):
hparams = self.hparams
is_training = hparams.mode == tf.estimator.ModeKeys.TRAIN
vocab_size = self._problem_hparams.vocab_size["targets"]
if hasattr(self._hparams, "vocab_divisor"):
vocab_size += (-vocab_size) % self._hparams.vocab_divisor
reconstr_gan = tf.nn.log_softmax(reconstr_gan)
if is_training and hparams.gumbel_temperature > 0.0:
gumbel_samples = discretization.gumbel_sample(
common_layers.shape_list(reconstr_gan))
gumbel_samples *= hparams.gumbel_noise_factor
reconstr_gan += gumbel_samples
reconstr_sample = latent_layers.multinomial_sample(
reconstr_gan, temperature=hparams.gumbel_temperature)
reconstr_gan = tf.nn.softmax(reconstr_gan / hparams.gumbel_temperature)
else:
reconstr_sample = tf.argmax(reconstr_gan, axis=-1)
reconstr_gan = tf.nn.softmax(reconstr_gan / 0.1) # Sharpen a bit.
# Use 1-hot forward, softmax backward.
reconstr_hot = tf.one_hot(reconstr_sample, vocab_size)
reconstr_gan += reconstr_hot - tf.stop_gradient(reconstr_gan)
return reconstr_gan
示例15: lm_loss
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import one_hot [as 別名]
def lm_loss(self):
"""
:return: stuff
"""
target_ids_flat = tf.reshape(self.target_ids, [-1])
# 1 if it's valid and 0 otherwise.
label_weights = tf.cast(tf.not_equal(target_ids_flat, self.pad_token_id), dtype=self.logits_flat.dtype)
# [batch_size * seq_length, vocab_size]
one_hot_labels = tf.one_hot(target_ids_flat,
depth=self.config.vocab_size,
dtype=self.logits_flat.dtype)
# [batch_size * seq_length, vocab_size]
logprobs_flat = tf.nn.log_softmax(self.logits_flat, axis=-1)
per_example_loss = -tf.reduce_sum(logprobs_flat * one_hot_labels, axis=[-1])
# per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits_flat, labels=target_ids_flat)
numerator = tf.reduce_sum(label_weights * per_example_loss)
denominator = tf.reduce_sum(label_weights) + 1e-5
loss = numerator / denominator
return loss