當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.not_equal方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.not_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.not_equal方法的具體用法?Python v1.not_equal怎麽用?Python v1.not_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.not_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: summarize_features

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def summarize_features(features, num_shards=1):
  """Generate summaries for features."""
  if not common_layers.should_generate_summaries():
    return

  with tf.name_scope("input_stats"):
    for (k, v) in sorted(six.iteritems(features)):
      if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and
          (v.dtype != tf.string)):
        tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
        tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
        nonpadding = tf.to_float(tf.not_equal(v, 0))
        nonpadding_tokens = tf.reduce_sum(nonpadding)
        tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
        tf.summary.scalar("%s_nonpadding_fraction" % k,
                          tf.reduce_mean(nonpadding)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:t2t_model.py

示例2: _symbol_bottom_simple

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def _symbol_bottom_simple(x, model_hparams, vocab_size, name, reuse):
  """Bottom transformation for symbols."""
  with tf.variable_scope(name, reuse=reuse):
    # Ensure the inputs are 3-D
    if len(x.get_shape()) == 4:
      x = tf.squeeze(x, axis=3)
    while len(x.get_shape()) < 3:
      x = tf.expand_dims(x, axis=-1)

    var = get_weights(model_hparams, vocab_size)
    x = common_layers.dropout_no_scaling(
        x, 1.0 - model_hparams.symbol_dropout)
    ret = common_layers.gather(var, x)
    if model_hparams.multiply_embedding_mode == "sqrt_depth":
      ret *= model_hparams.hidden_size**0.5
    ret *= tf.expand_dims(
        common_layers.cast_like(tf.not_equal(x, 0), ret), -1)
    return ret 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:modalities.py

示例3: weights_multi_problem

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def weights_multi_problem(labels, taskid=-1):
  """Assign weight 1.0 to only the "targets" portion of the labels.

  Weight 1.0 is assigned to all labels past the taskid.

  Args:
    labels: A Tensor of int32s.
    taskid: an int32 representing the task id for a problem.

  Returns:
    A Tensor of floats.

  Raises:
    ValueError: The Task ID must be valid.
  """
  taskid = check_nonnegative(taskid)
  past_taskid = tf.cumsum(to_float(tf.equal(labels, taskid)), axis=1)
  # Additionally zero out the task id location
  past_taskid *= to_float(tf.not_equal(labels, taskid))
  non_taskid = to_float(labels)
  return to_float(tf.not_equal(past_taskid * non_taskid, 0)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:23,代碼來源:common_layers.py

示例4: _select_top_k

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def _select_top_k(logits, top_k):
  """Replaces logits, expect the top k highest values, with small number (-1e6).

  If k is -1 don't replace anything.

  Args:
    logits: A `Tensor` of shape [batch_size, ..., vocab_size]
    top_k: vector of batch size.

  Returns:
    A `Tensor` with same shape  as logits.
  """
  vocab_size = logits.shape[-1]

  top_k = tf.where(
      tf.not_equal(top_k, -1), top_k,
      tf.ones_like(top_k) * vocab_size)

  return tf.where(
      tf.argsort(logits) < tf.reshape(top_k, [-1] + [1] *
                                      (len(logits.shape) - 1)), logits,
      tf.ones_like(logits) * -1e6) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:common_layers.py

示例5: filter_correct_class

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def filter_correct_class(verifiable_obj, num_classes, labels, margin):
  """Filters out the objective when the target class contains the true label.

  Args:
    verifiable_obj: 2D tensor of shape (num_classes, batch_size) containing
      verifiable objectives.
    num_classes: number of target classes.
    labels: 1D tensor of shape (batch_size) containing the labels for each
      example in the batch.
    margin: Verifiable objective values for correct class will be forced to
      `-margin`, thus disregarding large negative bounds when maximising.

  Returns:
   2D tensor of shape (num_classes, batch_size) containing the corrected
   verifiable objective values for each (class, example).
  """
  targets_to_filter = tf.expand_dims(
      tf.range(num_classes, dtype=labels.dtype), axis=1)
  neq = tf.not_equal(targets_to_filter, labels)
  verifiable_obj = tf.where(neq, verifiable_obj, -margin *
                            tf.ones_like(verifiable_obj))
  return verifiable_obj 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:24,代碼來源:robust_model.py

示例6: compare_generating_steps

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def compare_generating_steps(target_decode_steps, predicted_decode_steps):
  """Compare generating steps only but ignoring target copying steps.

  Args:
    target_decode_steps: Target DecodeSteps, Each tensor is expected to be shape
      [batch_size, output_length].
    predicted_decode_steps: Predicted DecodeSteps, Each tensor is expected to be
      shape [batch_size, output_length].

  Returns:
    A tensor of bools indicating whether generating steps are equal.
    Copy Steps will have value True.
  """
  # Set all copying steps to True, Since we only care about generating steps.
  return tf.logical_or(
      tf.not_equal(target_decode_steps.action_types, constants.GENERATE_ACTION),
      tf.logical_and(
          tf.equal(target_decode_steps.action_types,
                   predicted_decode_steps.action_types),
          tf.equal(target_decode_steps.action_ids,
                   predicted_decode_steps.action_ids))) 
開發者ID:google-research,項目名稱:language,代碼行數:23,代碼來源:decode_utils.py

示例7: weights_nonzero

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def weights_nonzero(labels):
  """Assign weight 1.0 to all labels except for padding (id=0)."""
  return to_float(tf.not_equal(labels, 0)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:5,代碼來源:common_layers.py

示例8: weights_prepend_inputs_to_targets

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def weights_prepend_inputs_to_targets(labels):
  """Assign weight 1.0 to only the "targets" portion of the labels.

  Weight 1.0 is assigned to all nonzero labels past the first zero.
  See prepend_mode in common_hparams.py

  Args:
    labels: A Tensor of int32s.

  Returns:
    A Tensor of floats.
  """
  past_first_zero = tf.cumsum(to_float(tf.equal(labels, 0)), axis=1)
  nonzero = to_float(labels)
  return to_float(tf.not_equal(past_first_zero * nonzero, 0)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:17,代碼來源:common_layers.py

示例9: bottom_simple

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def bottom_simple(x, model_hparams, vocab_size, name, reuse):
  """Internal bottom transformation."""
  with tf.variable_scope(name, reuse=reuse):
    var = _get_weights(model_hparams, vocab_size)
    x = common_layers.dropout_no_scaling(
        x, 1.0 - model_hparams.symbol_dropout)
    # Add together the embeddings for each tuple position.
    ret = tf.add_n([
        tf.gather(var, x[:, :, :, i] + sum(vocab_size[:i])) *
        tf.expand_dims(tf.to_float(tf.not_equal(x[:, :, :, i], 0)), -1)
        for i in range(len(vocab_size))
    ])
    if model_hparams.multiply_embedding_mode == 'sqrt_depth':
      ret *= model_hparams.hidden_size**0.5
    return ret 
開發者ID:magenta,項目名稱:magenta,代碼行數:17,代碼來源:modalities.py

示例10: maybe_rot180

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def maybe_rot180(image, label, static_axis, rot180_k=None):
  """Randomly rotate the image 180 degrees."""
  if rot180_k is None:
    rot180_k = 2 * tf.random_uniform(
        shape=[], minval=0, maxval=2, dtype=tf.int32)
  rot_or_not = tf.not_equal(rot180_k, 0)

  def _maybe_rot180(data):
    """Rotate or not according to rot_or_not."""
    data = tf.cond(tf.logical_and(rot_or_not, tf.equal(static_axis, 0)),
                   lambda: tf.transpose(data, [2, 1, 0]),
                   lambda: data)
    data = tf.cond(tf.logical_and(rot_or_not, tf.equal(static_axis, 1)),
                   lambda: tf.transpose(data, [0, 2, 1]),
                   lambda: data)

    data = tf.cond(rot_or_not,
                   lambda: tf.image.rot90(data, k=rot180_k),
                   lambda: data)

    data = tf.cond(tf.logical_and(rot_or_not, tf.equal(static_axis, 0)),
                   lambda: tf.transpose(data, [2, 1, 0]),
                   lambda: data)
    data = tf.cond(tf.logical_and(rot_or_not, tf.equal(static_axis, 1)),
                   lambda: tf.transpose(data, [0, 2, 1]),
                   lambda: data)
    return data

  return _maybe_rot180(image), _maybe_rot180(label) 
開發者ID:tensorflow,項目名稱:mesh,代碼行數:31,代碼來源:data_aug_lib.py

示例11: _ignore_pad

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def _ignore_pad(embeddings_table, ids, use_one_hot_embeddings=False):
  """Use mean of symbol embeddings as overall embedding but ignore PAD."""
  source_embeddings = common_layers.embedding_lookup(embeddings_table, ids,
                                                     use_one_hot_embeddings)
  # Set weights to ignore padding.
  embedded_weights = tf.to_float(tf.not_equal(ids, constants.PAD_SYMBOL_ID))
  embedded_weights = tf.expand_dims(embedded_weights, -1)
  return source_embeddings * embedded_weights 
開發者ID:google-research,項目名稱:language,代碼行數:10,代碼來源:embeddings.py

示例12: _bert_embeddings

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def _bert_embeddings(wordpiece_embedding_size, bert_config, features,
                     is_training, use_one_hot_embeddings, scope,
                     use_segment_ids):
  """Get embeddings from BERT."""
  token_type_ids = None
  if use_segment_ids:
    token_type_ids = features[constants.SEGMENT_ID_KEY]

  max_seq_len = tf.shape(features[constants.SOURCE_WORDPIECES_KEY])[1]
  input_mask = bert_utils.get_input_mask(max_seq_len,
                                         features[constants.SOURCE_LEN_KEY])
  input_ids = features[constants.SOURCE_WORDPIECES_KEY]
  source_embeddings = bert_utils.get_bert_embeddings(
      input_ids,
      bert_config,
      input_mask,
      token_type_ids=token_type_ids,
      is_training=is_training,
      use_one_hot_embeddings=use_one_hot_embeddings,
      scope=scope)
  source_embeddings = common_layers.linear_transform(source_embeddings,
                                                     wordpiece_embedding_size,
                                                     "bert_transform")

  # Set weights to ignore padding.
  embedded_weights = tf.to_float(
      tf.not_equal(input_ids, constants.PAD_SYMBOL_ID))
  embedded_weights = tf.expand_dims(embedded_weights, -1)
  return source_embeddings * embedded_weights 
開發者ID:google-research,項目名稱:language,代碼行數:31,代碼來源:embeddings.py

示例13: select_random_chunk

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def select_random_chunk(dataset,
                        max_length=gin.REQUIRED,
                        feature_key='targets',
                        **unused_kwargs):
  """Token-preprocessor to extract one span of at most `max_length` tokens.

  If the token sequence is longer than `max_length`, then we return a random
  subsequence.  Otherwise, we return the full sequence.

  This is generally followed by split_tokens.

  Args:
    dataset: a tf.data.Dataset with dictionaries containing the key feature_key.
    max_length: an integer
    feature_key: an string

  Returns:
    a dataset
  """
  def _my_fn(x):
    """Select a random chunk of tokens.

    Args:
      x: a 1d Tensor
    Returns:
      a 1d Tensor
    """
    tokens = x[feature_key]
    n_tokens = tf.size(tokens)
    num_segments = tf.cast(
        tf.ceil(tf.cast(n_tokens, tf.float32)
                / tf.cast(max_length, tf.float32)),
        tf.int32)
    start = max_length * tf.random_uniform(
        [], maxval=num_segments, dtype=tf.int32)
    end = tf.minimum(start + max_length, n_tokens)
    return {feature_key: tokens[start:end]}
  # Filter empty examples.
  dataset = dataset.filter(lambda x: tf.not_equal(tf.size(x[feature_key]), 0))
  return dataset.map(_my_fn, num_parallel_calls=num_parallel_calls()) 
開發者ID:google-research,項目名稱:text-to-text-transfer-transformer,代碼行數:42,代碼來源:preprocessors.py

示例14: normalize_example

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def normalize_example(self, example, hparams):
    """Assumes that example contains both inputs and targets."""

    length = self.max_length(hparams)
    def _to_constant_shape(tensor):
      tensor = tensor[:length]
      tensor = tf.pad(tensor, [(0, length - tf.shape(tensor)[0])])
      return tf.reshape(tensor, [length])

    if self.has_inputs:
      example['inputs'] = _to_constant_shape(example['inputs'])
      example['targets'] = _to_constant_shape(example['targets'])
    elif 'inputs' in example:
      if self.packed_length:
        raise ValueError('cannot concatenate packed examples on the fly.')
      inputs = example.pop('inputs')[:-1]  # Remove EOS token.
      targets = tf.concat([inputs, example['targets']], 0)
      example['targets'] = _to_constant_shape(targets)
    else:
      example['targets'] = _to_constant_shape(example['targets'])
    if self.packed_length:
      if self.has_inputs:
        if 'inputs_segmentation' in example:
          example['inputs_segmentation'] = _to_constant_shape(
              example['inputs_segmentation'])
          example['inputs_position'] = _to_constant_shape(
              example['inputs_position'])
        else:
          example['inputs_segmentation'] = tf.to_int64(
              tf.not_equal(example['inputs'], 0))
          example['inputs_position'] = (
              example['inputs_segmentation'] * tf.range(length, dtype=tf.int64))
      if 'targets_segmentation' in example:
        example['targets_segmentation'] = _to_constant_shape(
            example['targets_segmentation'])
        example['targets_position'] = _to_constant_shape(
            example['targets_position'])
      else:
        example['targets_segmentation'] = tf.to_int64(
            tf.not_equal(example['targets'], 0))
        example['targets_position'] = (
            example['targets_segmentation'] * tf.range(length, dtype=tf.int64))
    return example 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:45,代碼來源:multi_problem_v2.py

示例15: sample_mask_indices

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import not_equal [as 別名]
def sample_mask_indices(tokens, mask_rate, mask_blacklist, max_num_to_mask):
  """Samples indices to mask.

  Args:
    tokens (Tensor): 1-D string Tensor.
    mask_rate (float): percentage of tokens to mask.
    mask_blacklist (Tensor): 1-D string Tensor of tokens to NEVER mask.
    max_num_to_mask (int): max # of masks.

  Returns:
    mask_indices (Tensor): 1-D int32 Tensor of indices to mask.
  """
  if mask_rate < 0 or mask_rate > 1:
    raise ValueError("mask_rate must be within [0, 1].")

  # Compute how many tokens to mask.
  num_tokens = tf.size(tokens)
  num_to_mask = tf.to_int32(tf.ceil(mask_rate * tf.to_float(num_tokens)))

  if mask_rate > 0:
    # If masking is enabled, then mask at least one, no matter what.
    # Original BERT code does this too.
    num_to_mask = tf.maximum(num_to_mask, 1)

  num_to_mask = tf.minimum(num_to_mask, max_num_to_mask)

  # If there are any [CLS] or [SEP], we count these as part of num_tokens.
  # Note that the original implementation of BERT does this as well.

  all_indices = tf.range(num_tokens)

  # Filter out indices containing CLS and SEP.
  allow_masking = tf.reduce_all(
      tf.not_equal(tokens, mask_blacklist[:, None]), axis=0)

  filtered_indices = tf.boolean_mask(all_indices, allow_masking)

  # Randomly select indices without replacement.
  shuffled_indices = tf.random.shuffle(filtered_indices)
  mask_indices = shuffled_indices[:num_to_mask]

  return mask_indices 
開發者ID:google-research,項目名稱:language,代碼行數:44,代碼來源:preprocess.py


注:本文中的tensorflow.compat.v1.not_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。