當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.newaxis方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.newaxis方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.newaxis方法的具體用法?Python v1.newaxis怎麽用?Python v1.newaxis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.newaxis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sample_q

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def sample_q(
      self, targets, targets_mask, decoder_self_attention_bias, n_samples,
      temp, **kwargs):
    hparams = self._hparams
    batch_size, targets_max_length = common_layers.shape_list(targets_mask)[:2]
    q_params = ops.posterior("posterior", hparams, targets, targets_mask,
                             decoder_self_attention_bias, **kwargs)
    q_dist = gops.diagonal_normal(q_params, "posterior")
    loc, scale = q_dist.loc, q_dist.scale
    z_shape = [batch_size, targets_max_length, hparams.latent_size]
    iw_z_shape = [n_samples*batch_size, targets_max_length, hparams.latent_size]
    if n_samples == 1:
      noise = tf.random_normal(z_shape, stddev=temp)
      z_q = loc + scale * noise
      log_q_z = q_dist.log_prob(z_q)  # [B, L, C]
    else:
      noise = tf.random_normal([n_samples] + z_shape, stddev=temp)
      z_q = loc[tf.newaxis, ...] + scale[tf.newaxis, ...] * noise
      log_q_z = q_dist.log_prob(z_q)  # [K, B, L, C]
      z_q = tf.reshape(z_q, iw_z_shape)
      log_q_z = tf.reshape(log_q_z, iw_z_shape)
    return z_q, log_q_z, q_dist 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:transformer_vae_flow_prior.py

示例2: reduce_sum_over_lc

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def reduce_sum_over_lc(x, x_mask):
  """Returns sum of x (over L and C) given the actual length and pad.

  Args:
    x: input. (B,L,C)
    x_mask: binary padding mask. (B,L)

  Returns:
    sum of x. (B)
  """

  if x.shape.rank == 3 and x_mask.shape.rank == 2:
    x_mask = x_mask[..., tf.newaxis]
  else:
    tf.logging.info("x: {}, x_mask: {}".format(x.shape.rank, x_mask.shape.rank))
    raise ValueError("Dimension not supported.")

  mean = x * x_mask
  return tf.reduce_sum(mean, axis=[1, 2])  # sum over L, C 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:transformer_glow_layers_ops.py

示例3: reduce_mean_over_bl

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def reduce_mean_over_bl(x, x_mask):
  """Returns average of x (over B and L) given the actual length and pad.

  Args:
    x: input. (B,L,C)
    x_mask: binary padding mask. (B,L)

  Returns:
    mean of x. (C)
  """

  if x.shape.rank == 3 and x_mask.shape.rank == 2:
    x_mask = x_mask[..., tf.newaxis]
  else:
    tf.logging.info("x: {}, x_mask: {}".format(x.shape.rank, x_mask.shape.rank))
    raise ValueError("Dimension not supported.")

  mean = x * x_mask
  mean = tf.reduce_sum(mean, axis=[0, 1])  # sum over B, L
  return mean / tf.reduce_sum(x_mask) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:transformer_glow_layers_ops.py

示例4: call

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def call(self, inputs):
    batch_shape = tf.shape(inputs)[:-1]
    length = tf.shape(inputs)[-1]
    ngram_range_counts = []
    for n in range(self.minval, self.maxval):
      # Reshape inputs from [..., length] to [..., 1, length // n, n], dropping
      # remainder elements. Each n-vector is an ngram.
      reshaped_inputs = tf.reshape(
          inputs[..., :(n * (length // n))],
          tf.concat([batch_shape, [1], (length // n)[tf.newaxis], [n]], 0))
      # Count the number of times each ngram appears in the input. We do so by
      # checking whether each n-vector in the input is equal to each n-vector
      # in a Tensor of all possible ngrams. The comparison is batched between
      # the input Tensor of shape [..., 1, length // n, n] and the ngrams Tensor
      # of shape [..., input_dim**n, 1, n].
      ngrams = tf.reshape(
          list(np.ndindex((self.input_dim,) * n)),
          [1] * (len(inputs.shape)-1) + [self.input_dim**n, 1, n])
      is_ngram = tf.equal(
          tf.reduce_sum(tf.cast(tf.equal(reshaped_inputs, ngrams), tf.int32),
                        axis=-1),
          n)
      ngram_counts = tf.reduce_sum(tf.cast(is_ngram, tf.float32), axis=-1)
      ngram_range_counts.append(ngram_counts)
    return tf.concat(ngram_range_counts, axis=-1) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:ngram.py

示例5: _compute_auxiliary_structure

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def _compute_auxiliary_structure(self, contents_and_mask):
    """Compute segment and position metadata."""
    contents = contents_and_mask[:, :self._num_sequences]
    start_mask = tf.cast(contents_and_mask[:, self._num_sequences:],
                         dtype=INDEX_DTYPE)

    segment = tf.cumsum(start_mask, axis=0)
    uniform_count = tf.ones_like(segment[:, 0])
    position = []
    for i in range(self._num_sequences):
      segment_slice = segment[:, i]
      counts = tf.math.segment_sum(uniform_count, segment[:, i])
      position.append(tf.range(self._packed_length) -  tf.cumsum(
          tf.gather(counts, segment_slice - 1) * start_mask[:, i]))
    position = tf.concat([i[:, tf.newaxis] for i in position], axis=1)

    # Correct for padding tokens.
    pad_mask = tf.cast(tf.not_equal(contents, 0), dtype=INDEX_DTYPE)
    segment *= pad_mask
    position *= pad_mask

    return segment, position 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:generator_utils.py

示例6: get_in_out_from_samples

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def get_in_out_from_samples(mesh, npoints, sample_factor=10, std=0.01):
  """Get in/out point samples from a given mesh.

  Args:
    mesh: trimesh mesh. Original mesh to sample points from.
    npoints: int, number of points to sample on the mesh surface.
    sample_factor: int, number of samples to pick per surface point.
    std: float, std of samples to generate.
  Returns:
    surface_samples: [npoints, 6], where first 3 dims are xyz, last 3 dims are
    normals (nx, ny, nz).
  """
  surface_point_samples, fid = mesh.sample(int(npoints), return_index=True)
  surface_point_normals = mesh.face_normals[fid]
  offsets = np.random.randn(int(npoints), sample_factor, 1) * std
  near_surface_samples = (surface_point_samples[:, np.newaxis, :] +
                          surface_point_normals[:, np.newaxis, :] * offsets)
  near_surface_samples = np.concatenate([near_surface_samples, offsets],
                                        axis=-1)
  near_surface_samples = near_surface_samples.reshape([-1, 4])
  surface_samples = np.concatenate([surface_point_samples,
                                    surface_point_normals], axis=-1)
  return surface_samples, near_surface_samples 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:25,代碼來源:reconstruction.py

示例7: get_in_out_from_ray

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def get_in_out_from_ray(points_from_ray, sample_factor=10, std=0.01):
  """Get sample points from points from ray.

  Args:
    points_from_ray: [npts, 6], where first 3 dims are xyz, last 3 are ray dir.
    sample_factor: int, number of samples to pick per surface point.
    std: float, std of samples to generate.
  Returns:
    near_surface_samples: [npts*sample_factor, 4], where last dimension is
    distance to surface point.
  """
  surface_point_samples = points_from_ray[:, :3]
  surface_point_normals = points_from_ray[:, 3:]
  # make sure normals are normalized to unit length
  n = surface_point_normals
  surface_point_normals = n / (np.linalg.norm(n, axis=1, keepdims=True)+1e-8)
  npoints = points_from_ray.shape[0]
  offsets = np.random.randn(npoints, sample_factor, 1) * std
  near_surface_samples = (surface_point_samples[:, np.newaxis, :] +
                          surface_point_normals[:, np.newaxis, :] * offsets)
  near_surface_samples = np.concatenate([near_surface_samples, offsets],
                                        axis=-1)
  near_surface_samples = near_surface_samples.reshape([-1, 4])
  return near_surface_samples 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:26,代碼來源:reconstruction.py

示例8: regular_grid_interpolation

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def regular_grid_interpolation(grid,
                               pts,
                               min_grid_value=(0, 0, 0),
                               max_grid_value=(1, 1, 1)):
  """Regular grid interpolator, returns inpterpolation values.

  Args:
    grid: `[batch_size, *size, features]` tensor, input feature grid.
    pts: `[batch_size, num_points, dim]` tensor, coordinates of points that
    in each dim are within the range (min_grid_value[dim], max_grid_value[dim]).
    min_grid_value: tuple, minimum value in each dimension corresponding to the
      grid.
    max_grid_value: tuple, maximum values in each dimension corresponding to the
      grid.
  Returns:
    vals: `[batch_size, num_points, features]` tensor, values
  """
  lats, weights, _ = get_interp_coefficients(grid, pts, min_grid_value,
                                             max_grid_value)
  vals = tf.reduce_sum(lats * weights[..., tf.newaxis], axis=-2)
  return vals 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:23,代碼來源:regular_grid_interpolation.py

示例9: _init_graph

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def _init_graph(self):
    """Initialize computation graph for tensorflow."""
    with self.graph.as_default():
      self.encoder = g2v.GridEncoder(
          in_grid_res=self.in_grid_res,
          num_filters=self.num_filters,
          codelen=self.codelen,
          name='g2v')
      self.global_step = tf.get_variable(
          'global_step', shape=[], dtype=tf.int64)
      self.grid_ph = tf.placeholder(
          tf.float32, shape=[self.gres, self.gres, self.gres])
      self.start_ph = tf.placeholder(tf.int32, shape=[self.grid_batch, 3])
      self.ingrid = self._batch_slice(self.grid_ph, self.start_ph,
                                      self.in_grid_res, self.grid_batch)
      self.ingrid = self.ingrid[..., tf.newaxis]
      self.lats = self.encoder(self.ingrid, training=False)  # [gb, codelen]
      self.saver = tf.train.Saver()
      self.sess = tf.Session()
      self.saver.restore(self.sess, self.ckpt) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:22,代碼來源:evaluator.py

示例10: waves_to_stfts

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def waves_to_stfts(self, waves):
    """Convert from waves to complex stfts.

    Args:
      waves: Tensor of the waveform, shape [batch, time, 1].

    Returns:
      stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].
    """
    waves_padded = tf.pad(waves, [[0, 0], [self._pad_l, self._pad_r], [0, 0]])
    stfts = tf.signal.stft(
        waves_padded[:, :, 0],
        frame_length=self._nfft,
        frame_step=self._nhop,
        fft_length=self._nfft,
        pad_end=False)[:, :, :, tf.newaxis]
    stfts = stfts[:, :, 1:] if self._discard_dc else stfts[:, :, :-1]
    stft_shape = stfts.get_shape().as_list()[1:3]
    if tuple(stft_shape) != tuple(self._spec_shape):
      raise ValueError(
          'Spectrogram returned the wrong shape {}, is not the same as the '
          'constructor spec_shape {}.'.format(stft_shape, self._spec_shape))
    return stfts 
開發者ID:magenta,項目名稱:magenta,代碼行數:25,代碼來源:specgrams_helper.py

示例11: stfts_to_waves

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def stfts_to_waves(self, stfts):
    """Convert from complex stfts to waves.

    Args:
      stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].

    Returns:
      waves: Tensor of the waveform, shape [batch, time, 1].
    """
    dc = 1 if self._discard_dc else 0
    nyq = 1 - dc
    stfts = tf.pad(stfts, [[0, 0], [0, 0], [dc, nyq], [0, 0]])
    waves_resyn = tf.signal.inverse_stft(
        stfts=stfts[:, :, :, 0],
        frame_length=self._nfft,
        frame_step=self._nhop,
        fft_length=self._nfft,
        window_fn=tf.signal.inverse_stft_window_fn(
            frame_step=self._nhop))[:, :, tf.newaxis]
    # Python does not allow rslice of -0
    if self._pad_r == 0:
      return waves_resyn[:, self._pad_l:]
    else:
      return waves_resyn[:, self._pad_l:-self._pad_r] 
開發者ID:magenta,項目名稱:magenta,代碼行數:26,代碼來源:specgrams_helper.py

示例12: stfts_to_specgrams

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def stfts_to_specgrams(self, stfts):
    """Converts stfts to specgrams.

    Args:
      stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].

    Returns:
      specgrams: Tensor of log magnitudes and instantaneous frequencies,
        shape [batch, time, freq, 2].
    """
    stfts = stfts[:, :, :, 0]

    logmag = self._safe_log(tf.abs(stfts))

    phase_angle = tf.angle(stfts)
    if self._ifreq:
      p = spectral_ops.instantaneous_frequency(phase_angle)
    else:
      p = phase_angle / np.pi

    return tf.concat(
        [logmag[:, :, :, tf.newaxis], p[:, :, :, tf.newaxis]], axis=-1) 
開發者ID:magenta,項目名稱:magenta,代碼行數:24,代碼來源:specgrams_helper.py

示例13: specgrams_to_stfts

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def specgrams_to_stfts(self, specgrams):
    """Converts specgrams to stfts.

    Args:
      specgrams: Tensor of log magnitudes and instantaneous frequencies,
        shape [batch, time, freq, 2].

    Returns:
      stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].
    """
    logmag = specgrams[:, :, :, 0]
    p = specgrams[:, :, :, 1]

    mag = tf.exp(logmag)

    if self._ifreq:
      phase_angle = tf.cumsum(p * np.pi, axis=-2)
    else:
      phase_angle = p * np.pi

    return spectral_ops.polar2rect(mag, phase_angle)[:, :, :, tf.newaxis] 
開發者ID:magenta,項目名稱:magenta,代碼行數:23,代碼來源:specgrams_helper.py

示例14: top_k_logits

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def top_k_logits(logits, k):
    if k == 0:
        # no truncation
        return logits

    def _top_k():
        values, _ = tf.nn.top_k(logits, k=k)
        min_values = values[:, -1, tf.newaxis]
        return tf.where(
            logits < min_values,
            tf.ones_like(logits, dtype=logits.dtype) * -1e10,
            logits,
        )
    return tf.cond(
        tf.equal(k, 0),
        lambda: logits,
        lambda: _top_k(),
    ) 
開發者ID:re-search,項目名稱:gpt2-estimator,代碼行數:20,代碼來源:sample.py

示例15: compute_valid_mask

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import newaxis [as 別名]
def compute_valid_mask(num_valid_elements, num_elements):
  """Computes mask of valid entries within padded context feature.

  Args:
    num_valid_elements: A int32 Tensor of shape [batch_size].
    num_elements: An int32 Tensor.

  Returns:
    A boolean Tensor of the shape [batch_size, num_elements]. True means
      valid and False means invalid.
  """
  batch_size = num_valid_elements.shape[0]
  element_idxs = tf.range(num_elements, dtype=tf.int32)
  batch_element_idxs = tf.tile(element_idxs[tf.newaxis, ...], [batch_size, 1])
  num_valid_elements = num_valid_elements[..., tf.newaxis]
  valid_mask = tf.less(batch_element_idxs, num_valid_elements)
  return valid_mask 
開發者ID:tensorflow,項目名稱:models,代碼行數:19,代碼來源:context_rcnn_lib.py


注:本文中的tensorflow.compat.v1.newaxis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。