當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.name_scope方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.name_scope方法的具體用法?Python v1.name_scope怎麽用?Python v1.name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.name_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: unpack_grad_tuple

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def unpack_grad_tuple(gv, gpt):
  """Unpack a previously packed collection of gradient tensors.

  Args:
    gv: A (grad, var) pair to be unpacked.
    gpt: A GradPackTuple describing the packing operation that produced gv.

  Returns:
    A list of (grad, var) pairs corresponding to the values that were
     originally packed into gv, maybe following subsequent operations like
     reduction.
  """
  elt_widths = [x.num_elements() for x in gpt.shapes]
  with tf.device(gv[0][0].device):
    with tf.name_scope('unpack'):
      splits = tf.split(gv[0], elt_widths)
      unpacked_gv = []
      for idx, s in enumerate(splits):
        unpacked_gv.append((tf.reshape(s, gpt.shapes[idx]), gpt.vars[idx]))
  return unpacked_gv 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:22,代碼來源:allreduce.py

示例2: loss_function

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def loss_function(self, inputs, build_network_result):
    """Returns the op to measure the loss of the model."""
    logits = build_network_result.logits
    _, labels = inputs
    # TODO(laigd): consider putting the aux logit in the Inception model,
    # which could call super.loss_function twice, once with the normal logits
    # and once with the aux logits.
    aux_logits = build_network_result.extra_info
    with tf.name_scope('xentropy'):
      mlperf.logger.log(key=mlperf.tags.MODEL_HP_LOSS_FN, value=mlperf.tags.CCE)
      cross_entropy = tf.losses.sparse_softmax_cross_entropy(
          logits=logits, labels=labels)
      loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
    if aux_logits is not None:
      with tf.name_scope('aux_xentropy'):
        aux_cross_entropy = tf.losses.sparse_softmax_cross_entropy(
            logits=aux_logits, labels=labels)
        aux_loss = 0.4 * tf.reduce_mean(aux_cross_entropy, name='aux_loss')
        loss = tf.add_n([loss, aux_loss])
    return loss 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:22,代碼來源:model.py

示例3: decode_jpeg

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3,
                                 fancy_upscaling=False,
                                 dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

    return image 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:25,代碼來源:preprocessing.py

示例4: _benchmark_train

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def _benchmark_train(self):
    """Run cnn in benchmark mode. Skip the backward pass if forward_only is on.

    Returns:
      Dictionary containing training statistics (num_workers, num_steps,
      average_wall_time, images_per_sec).
    """
    graph = tf.Graph()
    with graph.as_default():
      build_result = self._build_graph()
      if self.mode == constants.BenchmarkMode.TRAIN_AND_EVAL:
        with self.variable_mgr.reuse_variables():
          with tf.name_scope('Evaluation') as ns:
            eval_build_results = self._build_eval_graph(ns)
      else:
        eval_build_results = None
    (graph, result_to_benchmark) = self._preprocess_graph(graph, build_result)
    with graph.as_default():
      return self._benchmark_graph(result_to_benchmark, eval_build_results) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:21,代碼來源:benchmark_cnn.py

示例5: mask_from_lengths

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def mask_from_lengths(lengths, max_length=None, dtype=None, name=None):
  """Convert a length scalar to a vector of binary masks.

  This function will convert a vector of lengths to a matrix of binary masks.
  E.g. [2, 4, 3] will become [[1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 0]]

  Args:
    lengths: a d-dimensional vector of integers corresponding to lengths.
    max_length: an optional (default: None) scalar-like or 0-dimensional tensor
      indicating the maximum length of the masks. If not provided, the maximum
      length will be inferred from the lengths vector.
    dtype: the dtype of the returned mask, if specified. If None, the dtype of
      the lengths will be used.
    name: a name for the operation (optional).

  Returns:
    A d x max_length tensor of binary masks (int32).
  """
  with tf.name_scope(name, 'mask_from_lengths'):
    dtype = lengths.dtype if dtype is None else dtype
    max_length = tf.reduce_max(lengths) if max_length is None else max_length
    indexes = tf.range(max_length, dtype=lengths.dtype)
    mask = tf.less(tf.expand_dims(indexes, 0), tf.expand_dims(lengths, 1))
    cast_mask = tf.cast(mask, dtype)
  return tf.stop_gradient(cast_mask) 
開發者ID:deepmind,項目名稱:lamb,代碼行數:27,代碼來源:utils.py

示例6: evaluate

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def evaluate(self, env_fn, hparams, sampling_temp):
    with tf.Graph().as_default():
      with tf.name_scope("rl_eval"):
        eval_env = env_fn(in_graph=True)
        (collect_memory, _, collect_init) = _define_collect(
            eval_env,
            hparams,
            "ppo_eval",
            eval_phase=True,
            frame_stack_size=self.frame_stack_size,
            force_beginning_resets=False,
            sampling_temp=sampling_temp,
            distributional_size=self._distributional_size,
        )
        model_saver = tf.train.Saver(
            tf.global_variables(hparams.policy_network + "/.*")
            # tf.global_variables("clean_scope.*")  # Needed for sharing params.
        )

        with tf.Session() as sess:
          sess.run(tf.global_variables_initializer())
          collect_init(sess)
          trainer_lib.restore_checkpoint(self.agent_model_dir, model_saver,
                                         sess)
          sess.run(collect_memory) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:ppo_learner.py

示例7: add_scope

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def add_scope(scope=None, scope_fn=None):
  """Return a decorator which add a TF name/variable scope to a function.

  Note that the function returned by the decorator accept an additional 'name'
  parameter, which can overwrite the name scope given when the function is
  created.

  Args:
    scope (str): name of the scope. If None, the function name is used.
    scope_fn (fct): Either tf.name_scope or tf.variable_scope

  Returns:
    fct: the add_scope decorator
  """
  def decorator(f):

    @functools.wraps(f)
    def decorated(*args, **kwargs):
      name = kwargs.pop("name", None)  # Python 2 hack for keyword only args
      with scope_fn(name or scope or f.__name__):
        return f(*args, **kwargs)

    return decorated

  return decorator 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:expert_utils.py

示例8: remove

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def remove(self, x):
    """Remove padding from the given tensor.

    Args:
      x (tf.Tensor): of shape [dim_origin,...]

    Returns:
      a tensor of shape [dim_compressed,...] with dim_compressed <= dim_origin
    """
    with tf.name_scope("pad_reduce/remove"):
      x_shape = x.get_shape().as_list()
      x = tf.gather_nd(
          x,
          indices=self.nonpad_ids,
      )
      if not tf.executing_eagerly():
        # This is a hack but for some reason, gather_nd return a tensor of
        # undefined shape, so the shape is set up manually
        x.set_shape([None] + x_shape[1:])
    return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:expert_utils.py

示例9: restore

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def restore(self, x):
    """Add padding back to the given tensor.

    Args:
      x (tf.Tensor): of shape [dim_compressed,...]

    Returns:
      a tensor of shape [dim_origin,...] with dim_compressed >= dim_origin. The
      dim is restored from the original reference tensor
    """
    with tf.name_scope("pad_reduce/restore"):
      x = tf.scatter_nd(
          indices=self.nonpad_ids,
          updates=x,
          shape=tf.concat([self.dim_origin, tf.shape(x)[1:]], axis=0),
      )
    return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:expert_utils.py

示例10: summarize_features

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def summarize_features(features, num_shards=1):
  """Generate summaries for features."""
  if not common_layers.should_generate_summaries():
    return

  with tf.name_scope("input_stats"):
    for (k, v) in sorted(six.iteritems(features)):
      if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and
          (v.dtype != tf.string)):
        tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
        tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
        nonpadding = tf.to_float(tf.not_equal(v, 0))
        nonpadding_tokens = tf.reduce_sum(nonpadding)
        tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
        tf.summary.scalar("%s_nonpadding_fraction" % k,
                          tf.reduce_mean(nonpadding)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:t2t_model.py

示例11: build_controller

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def build_controller(self):
    """Create the RNN and output projections for controlling the stack.
    """
    with tf.name_scope("controller"):
      self.rnn = contrib.rnn().BasicRNNCell(self._num_units)
      self._input_proj = self.add_variable(
          "input_projection_weights",
          shape=[self._embedding_size * (self._num_read_heads + 1),
                 self._num_units],
          dtype=self.dtype)
      self._input_bias = self.add_variable(
          "input_projection_bias",
          shape=[self._num_units],
          initializer=tf.zeros_initializer(dtype=self.dtype))
      self._push_proj, self._push_bias = self.add_scalar_projection(
          "push", self._num_write_heads)
      self._pop_proj, self._pop_bias = self.add_scalar_projection(
          "pop", self._num_write_heads)
      self._value_proj, self._value_bias = self.add_vector_projection(
          "value", self._num_write_heads)
      self._output_proj, self._output_bias = self.add_vector_projection(
          "output", 1) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:neural_stack.py

示例12: rank_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
  """Experimental rank loss, thanks to kkurach@ for the code."""
  with tf.name_scope("rank_loss"):
    # Normalize first as this is assumed in cosine similarity later.
    sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
    image_emb = tf.nn.l2_normalize(image_emb, 1)
    # Both sentence_emb and image_emb have size [batch, depth].
    scores = tf.matmul(image_emb, tf.transpose(sentence_emb))  # [batch, batch]
    diagonal = tf.diag_part(scores)  # [batch]
    cost_s = tf.maximum(0.0, margin - diagonal + scores)  # [batch, batch]
    cost_im = tf.maximum(
        0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores)  # [batch, batch]
    # Clear diagonals.
    batch_size = tf.shape(sentence_emb)[0]
    empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
    cost_s *= empty_diagonal_mat
    cost_im *= empty_diagonal_mat
    return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:slicenet.py

示例13: calc_loss_psnr

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def calc_loss_psnr(gen_images, images, name, hparams=None, use_l1_loss=False):
  """Calculates loss and psnr for predictions over multiple timesteps."""
  del hparams
  with tf.name_scope(name):
    loss, error, psnr_all = 0.0, 0.0, 0.0
    for _, x, gx in zip(range(len(gen_images)), images, gen_images):
      recon_cost = mean_squared_error(x, gx)
      if use_l1_loss:
        recon_cost = l1_error(x, gx)

      error_i = l1_error(x, gx)
      psnr_i = peak_signal_to_noise_ratio(x, gx)
      psnr_all += psnr_i
      error += error_i
      loss += recon_cost

    psnr_all /= tf.to_float(len(gen_images))
    loss /= tf.to_float(len(gen_images))
    error /= tf.to_float(len(gen_images))

    # if not hparams.use_tpu:
    tf.summary.scalar('psnr_all', psnr_all)
    tf.summary.scalar('loss', loss)

    return loss, psnr_all 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:epva.py

示例14: ctc_symbol_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def ctc_symbol_loss(top_out, targets, model_hparams, vocab_size, weight_fn):
  """Compute the CTC loss."""
  del model_hparams, vocab_size  # unused arg
  logits = top_out
  with tf.name_scope("ctc_loss", values=[logits, targets]):
    # For CTC we assume targets are 1d, [batch, length, 1, 1] here.
    targets_shape = targets.get_shape().as_list()
    assert len(targets_shape) == 4
    assert targets_shape[2] == 1
    assert targets_shape[3] == 1
    targets = tf.squeeze(targets, axis=[2, 3])
    logits = tf.squeeze(logits, axis=[2, 3])
    targets_mask = 1 - tf.to_int32(tf.equal(targets, 0))
    targets_lengths = tf.reduce_sum(targets_mask, axis=1)
    sparse_targets = tf.keras.backend.ctc_label_dense_to_sparse(
        targets, targets_lengths)
    xent = tf.nn.ctc_loss(
        sparse_targets,
        logits,
        targets_lengths,
        time_major=False,
        preprocess_collapse_repeated=False,
        ctc_merge_repeated=False)
    weights = weight_fn(targets)
    return tf.reduce_sum(xent), tf.reduce_sum(weights) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:modalities.py

示例15: _call_sampler

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import name_scope [as 別名]
def _call_sampler(sample_n_fn, sample_shape, name=None):
  """Reshapes vector of samples."""
  with tf.name_scope(name, "call_sampler", values=[sample_shape]):
    sample_shape = tf.convert_to_tensor(
        sample_shape, dtype=tf.int32, name="sample_shape")
    # Ensure sample_shape is a vector (vs just a scalar).
    pad = tf.cast(tf.equal(tf.rank(sample_shape), 0), tf.int32)
    sample_shape = tf.reshape(
        sample_shape,
        tf.pad(tf.shape(sample_shape),
               paddings=[[pad, 0]],
               constant_values=1))
    samples = sample_n_fn(tf.reduce_prod(sample_shape))
    batch_event_shape = tf.shape(samples)[1:]
    final_shape = tf.concat([sample_shape, batch_event_shape], 0)
    return tf.reshape(samples, final_shape) 
開發者ID:magenta,項目名稱:magenta,代碼行數:18,代碼來源:seq2seq.py


注:本文中的tensorflow.compat.v1.name_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。