本文整理匯總了Python中tensorflow.compat.v1.logging方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.logging方法的具體用法?Python v1.logging怎麽用?Python v1.logging使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.logging方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: printable_text
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return six.ensure_text(text, "utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, six.text_type):
return six.ensure_binary(text, "utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
示例2: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def __init__(self, vocab_file, do_lower_case=True, spm_model_file=None):
self.vocab = None
self.sp_model = None
if spm_model_file:
import sentencepiece as spm
self.sp_model = spm.SentencePieceProcessor()
tf.compat.v1.logging.info("loading sentence piece model")
self.sp_model.Load(spm_model_file)
# Note(mingdachen): For the purpose of consisent API, we are
# generating a vocabulary for the sentence piece tokenizer.
self.vocab = {self.sp_model.IdToPiece(i): i for i
in range(self.sp_model.GetPieceSize())}
else:
self.vocab = load_vocab(vocab_file)
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
示例3: _run_one_phase
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def _run_one_phase(self, min_steps, statistics, run_mode_str):
# Mostly copy of parent method.
step_count = 0
num_episodes = 0
sum_returns = 0.
while step_count < min_steps:
num_steps, episode_returns = self._run_one_episode()
for episode_return in episode_returns:
statistics.append({
"{}_episode_lengths".format(run_mode_str):
num_steps / self.batch_size,
"{}_episode_returns".format(run_mode_str): episode_return
})
step_count += num_steps
sum_returns += sum(episode_returns)
num_episodes += self.batch_size
# We use sys.stdout.write instead of tf.logging so as to flush frequently
# without generating a line break.
sys.stdout.write("Steps executed: {} ".format(step_count) +
"Batch episodes steps: {} ".format(num_steps) +
"Returns: {}\r".format(episode_returns))
sys.stdout.flush()
return step_count, sum_returns, num_episodes
示例4: initialize_from_ckpt
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def initialize_from_ckpt(ckpt_dir, hparams):
"""Initialize variables from given directory."""
model_dir = hparams.get("model_dir", None)
already_has_ckpt = (
model_dir and tf.train.latest_checkpoint(model_dir) is not None)
if already_has_ckpt:
return
tf.logging.info("Checkpoint dir: %s", ckpt_dir)
reader = contrib.framework().load_checkpoint(ckpt_dir)
variable_map = {}
for var in contrib.framework().get_trainable_variables():
var_name = var.name.split(":")[0]
if reader.has_tensor(var_name):
tf.logging.info("Loading variable from checkpoint: %s", var_name)
variable_map[var_name] = var
else:
tf.logging.info("Cannot find variable in checkpoint, skipping: %s",
var_name)
tf.train.init_from_checkpoint(ckpt_dir, variable_map)
示例5: printable_text
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
示例6: printable_text
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return six.ensure_text(text, "utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, six.text_type):
return six.ensure_binary(text, "utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
示例7: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def __init__(self, vocab_file, do_lower_case=True, spm_model_file=None):
self.vocab = None
self.sp_model = None
if spm_model_file:
self.sp_model = spm.SentencePieceProcessor()
tf.logging.info("loading sentence piece model")
# Handle cases where SP can't load the file, but gfile can.
sp_model_ = tf.gfile.GFile(spm_model_file, "rb").read()
self.sp_model.LoadFromSerializedProto(sp_model_)
# Note(mingdachen): For the purpose of consisent API, we are
# generating a vocabulary for the sentence piece tokenizer.
self.vocab = {self.sp_model.IdToPiece(i): i for i
in range(self.sp_model.GetPieceSize())}
else:
self.vocab = load_vocab(vocab_file)
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
示例8: main
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def main(_):
with open(FLAGS.wiki103_raw, "r") as f:
data = f.read().strip().split("\n")
data = [x.split(" . ") for x in data if x.strip() and x.strip()[0] != "="]
sentences = []
for para in data:
for sent in para:
sentences.append(sent + ".")
data = "\n".join(sentences)
data = data.replace(" @.@ ", ".").replace(" @-@ ", "-").replace(" ,", ",")
data = data.replace(" \'", "\'").replace(" )", ")").replace("( ", "(")
data = data.replace(" ;", ";")
data = "\n".join([x for x in data.split("\n") if len(x.split()) > 3])
logging.info("length = %d", len(data.split("\n")))
with open(FLAGS.output_path, "w") as f:
f.write(data)
示例9: main
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def main(_):
def load_dataset_file(dataset_file):
with gfile.Open(dataset_file) as df:
dataset_json = json.load(df)
data = dataset_json['data']
return data
def load_preds_file(prediction_file):
with gfile.Open(prediction_file) as pf:
preds = json.load(pf)
return preds
dataset = load_dataset_file(FLAGS.watermark_file)
preds = load_preds_file(FLAGS.watermark_output_file)
logging.info('Watermark Label Accuracy =')
logging.info(
json.dumps(evaluate_dataset_preds(dataset, preds, ans_key='answers')))
logging.info('Victim Label Accuracy =')
logging.info(
json.dumps(
evaluate_dataset_preds(dataset, preds, ans_key='original_answers')))
示例10: main
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def main(_):
with open(FLAGS.wiki103_raw, "r") as f:
data = f.read().strip().split("\n")
data = [x for x in data if x.strip() and x.strip()[0] != "="]
data = "\n".join(data)
data = data.replace(" @.@ ", ".").replace(" @-@ ", "-").replace(" ,", ",")
data = data.replace(" \'", "\'").replace(" )", ")").replace("( ", "(")
data = data.replace(" ;", ";").replace(" .", ".").replace(" :", ":")
data = "\n".join([x for x in data.split("\n") if len(x.split()) > 20])
logging.info("length = %d", len(data.split("\n")))
with open(FLAGS.output_path, "w") as f:
f.write(data)
示例11: printable_text
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def printable_text(text, strip_roberta_space=False):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
strip = (lambda x: (x.replace('Ġ', '') if x.startswith('Ġ') else x)
) if strip_roberta_space else (lambda x: x)
if six.PY3:
if isinstance(text, str):
return strip(text)
elif isinstance(text, bytes):
return strip(text.decode('utf-8', 'ignore'))
else:
raise ValueError('Unsupported string type: %s' % (type(text)))
elif six.PY2:
if isinstance(text, str):
return strip(text)
elif isinstance(text, unicode):
return strip(text.encode('utf-8'))
else:
raise ValueError('Unsupported string type: %s' % (type(text)))
else:
raise ValueError('Not running on Python2 or Python 3?')
示例12: config_context
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def config_context(self, context, params=None):
# declare the KG relations
relation_filename = '%s/%s/%s' % (FLAGS.rootdir, FLAGS.task,
FLAGS.relation_file)
for line in tf.io.gfile.GFile(relation_filename):
line = line.strip()
rel, subj_type, obj_type = line.split('\t')
context.declare_relation(rel, subj_type, obj_type)
# we will also use NQL for a distance flag, which indicates if the relation
# is followed forward or backward
context.extend_type('distance_t', [str(h) for h in range(FLAGS.num_hops)])
# load the lines from the KG
start_time = time.time()
kg_filename = '%s/%s/%s' % (FLAGS.rootdir, FLAGS.task, FLAGS.kg_file)
logging.info('loading KG from %s', kg_filename)
with tf.gfile.GFile(kg_filename) as fp:
context.load_kg(files=fp)
logging.info('loaded kg in %.3f sec', (time.time() - start_time))
# finally extend the KG to allow us to use relation names as variables
context.construct_relation_group('rel_ent2ent_g', 'entity_t', 'entity_t')
示例13: config_context
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def config_context(self, context, params=None):
# declare the KG relations
relation_filename = '%s/%s' % (FLAGS.rootdir, FLAGS.relation_file)
for line in tf.io.gfile.GFile(relation_filename):
rel = line.strip()
context.declare_relation(rel, 'entity_t', 'entity_t')
# we will also use NQL for a direction flag, which indicates if the relation
# is followed forward or backward
context.extend_type('direction_t', ['forward', 'backward'])
# load the lines from the KG
start_time = time.time()
kg_filename = '%s/%s' % (FLAGS.rootdir, FLAGS.kg_file)
logging.info('loading KG from %s', kg_filename)
with tf.gfile.GFile(kg_filename) as fp:
context.load_kg(files=fp)
logging.info('loaded kg in %.3f sec', (time.time() - start_time))
# finally extend the KG to allow us to use relation names as variables
context.construct_relation_group('rel_g', 'entity_t', 'entity_t')
示例14: convert_tokens_to_ids
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def convert_tokens_to_ids(self, tokens):
if self.sp_model:
tf.compat.v1.logging.info("using sentence piece tokenzier.")
return [self.sp_model.PieceToId(
printable_text(token)) for token in tokens]
else:
return convert_by_vocab(self.vocab, tokens)
示例15: convert_ids_to_tokens
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import logging [as 別名]
def convert_ids_to_tokens(self, ids):
if self.sp_model:
tf.compat.v1.logging.info("using sentence piece tokenzier.")
return [self.sp_model.IdToPiece(id_) for id_ in ids]
else:
return convert_by_vocab(self.inv_vocab, ids)